forked from TwistedW/LGAN_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
205 lines (178 loc) · 7.17 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import functools
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--dataroot', type=str, default='./dataset/mnist', help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--naxis', type=int, default=5, help='interpolation axis')
parser.add_argument('--testsize', type=int, default=20, help='number of test images')
parser.add_argument('--imagesize', type=int, default=32, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=10, help='size of the latent z vector')
parser.add_argument('--nc', type=int, default=1, help='input channel')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--cuda', default=True, help='enables cuda')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--netG', default='./result/train/mnist/netG_epoch_19.pth', help="path to netG (to continue training)")
parser.add_argument('--outf', default='./result/test/mnist', help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--var', type=float, default=3)
opt = parser.parse_args()
print(opt)
try:
os.makedirs(opt.outf)
except OSError:
pass
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
dataset = dset.MNIST(root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Resize(opt.imagesize),
transforms.RandomCrop(opt.imagesize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1,
shuffle=True, num_workers=int(opt.workers))
ngpu = int(opt.ngpu)
nz = int(opt.nz)
ngf = int(opt.ngf)
nc = int(opt.nc)
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
# m.weight.data.normal_(0.0, 0.02)
init.xavier_uniform_(m.weight.data)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class _netG(nn.Module):
def __init__(self, nc, ngf=64, nz=100,
norm_layer=nn.BatchNorm2d, use_dropout=False):
super(_netG, self).__init__()
self.encoder = nn.Sequential(
# input is X, going into a convolution
nn.Conv2d(nc, ngf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, True),
# state size, (ngf) x 16 x 16
nn.Conv2d(ngf, 2 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(2 * ngf),
nn.LeakyReLU(0.2, True),
# state size, (2*ngf) x 8 x 8
nn.Conv2d(2 * ngf, 4 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(4 * ngf),
nn.LeakyReLU(0.2, True),
# state size, (4*ngf) x 4 x 4
nn.Conv2d(4 * ngf, 8 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(8 * ngf),
nn.LeakyReLU(0.2, True),
# state size, (8*ngf) x 2 x 2
nn.Conv2d(8 * ngf, nz, 4, 2, 1, bias=False),
nn.BatchNorm2d(nz)
# state size, (nz) x 1 x 1
)
self.decoder = nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.ConvTranspose2d(nz, 8 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(8 * ngf),
# state size, (8*ngf) x 2 x 2
nn.ReLU(True),
nn.ConvTranspose2d(8 * ngf, 4 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(4 * ngf),
# state size, (4*ngf) x 4 x 4
nn.ReLU(True),
nn.ConvTranspose2d(4 * ngf, 2 * ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(2 * ngf),
# state size, (2*ngf) x 8 x 8
nn.ReLU(True),
nn.ConvTranspose2d(2 * ngf, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
# state size, (ngf) x 16 x 16
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size, (nc) x 32 x 32
)
def forward(self, x, z):
output = self.encoder(x)
output = output + z
output = self.decoder(output)
return output
if opt.cuda:
netG = torch.nn.DataParallel(_netG(nc, ngf, nz), device_ids=range(ngpu))
else:
netG = _netG(nc, ngf, nz)
netG.apply(weights_init)
if opt.netG != '':
netG.load_state_dict(torch.load(opt.netG))
print(netG)
netG.eval()
input = torch.Tensor(1, nc, opt.imagesize, opt.imagesize)
noise = torch.Tensor(1, nz, 1, 1).fill_(0)
noise_ = torch.Tensor(1, nz, 1, 1)
random_axis = [i for i in range(nz)]
random.shuffle(random_axis)
random_axis = random_axis[:opt.naxis]
if opt.cuda:
netG.cuda()
input = input.cuda()
noise = noise.cuda()
noise_ = noise_.cuda()
for i, data in enumerate(dataloader, 0):
real_cpu, _ = data
if opt.cuda:
real_cpu = real_cpu.cuda()
input.copy_(real_cpu)
inputv = Variable(input)
if i < opt.testsize:
vutils.save_image(inputv.data,
'%s/real_samples_%03d.png' % (opt.outf, i),
normalize=True)
noise_.copy_(noise)
noise_[0][random_axis[0]].fill_(-5 * opt.var)
noise_v = Variable(noise_)
fake_panel = netG(inputv, noise_v)
for ii in range(0, opt.naxis):
noise_.copy_(noise)
if ii == 0:
for jj in range(1, 15):
noise_[0][random_axis[ii]].fill_(-5 * opt.var + 5. / 7. * opt.var * jj)
noise_v = Variable(noise_)
fake = netG(inputv, noise_v)
fake_panel = torch.cat((fake_panel, fake), 0)
else:
for jj in range(0, 15):
noise_[0][random_axis[ii]].fill_(-5 * opt.var + 5. / 7. * opt.var * jj)
noise_v = Variable(noise_)
fake = netG(inputv, noise_v)
fake_panel = torch.cat((fake_panel, fake), 0)
vutils.save_image(fake_panel.data,
'%s/fake_samples_%03d.png' % (opt.outf, i),
normalize=True, nrow=15)
else:
break