-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathchp6.ml
288 lines (218 loc) · 7.74 KB
/
chp6.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
(* Chapter 6
===========================================================================
Original source code in SML from:
Purely Functional Data Structures
Chris Okasaki
Copyright © 1998 Cambridge University Press
===========================================================================
Translation from SML to OCAML (this file):
Copyright © 1999- Markus Mottl <[email protected]>
===========================================================================
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
(***********************************************************************)
(* Chapter 6 *)
(***********************************************************************)
exception Empty
exception Impossible_pattern of string
let impossible_pat x = raise (Impossible_pattern x)
module type QUEUE = sig
type 'a queue
val empty : 'a queue
val is_empty : 'a queue -> bool
val snoc : 'a queue -> 'a -> 'a queue
val head : 'a queue -> 'a (* raises Empty if queue is empty *)
val tail : 'a queue -> 'a queue (* raises Empty if queue is empty *)
end
(* A totally ordered type and its comparison functions *)
module type ORDERED = sig
type t
val eq : t -> t -> bool
val lt : t -> t -> bool
val leq : t -> t -> bool
end
module type HEAP = sig
module Elem : ORDERED
type heap
val empty : heap
val is_empty : heap -> bool
val insert : Elem.t -> heap -> heap
val merge : heap -> heap -> heap
val find_min : heap -> Elem.t (* raises Empty if heap is empty *)
val delete_min : heap -> heap (* raises Empty if heap is empty *)
end
(* ---------- Streams as found in chapter 4 ---------- *)
let ( !$ ) = Lazy.force
module type STREAM = sig
type 'a stream_cell = Nil | Cons of 'a * 'a stream
and 'a stream = 'a stream_cell Lazy.t
val ( ++ ) : 'a stream -> 'a stream -> 'a stream (* stream append *)
val take : int -> 'a stream -> 'a stream
val drop : int -> 'a stream -> 'a stream
val reverse : 'a stream -> 'a stream
end
module Stream : STREAM = struct
type 'a stream_cell = Nil | Cons of 'a * 'a stream
and 'a stream = 'a stream_cell Lazy.t
let rec ( ++ ) s1 s2 =
lazy
(match s1 with
| (lazy Nil) -> Lazy.force s2
| (lazy (Cons (hd, tl))) -> Cons (hd, tl ++ s2))
let rec take n s =
lazy
(if n = 0 then Nil
else
match s with
| (lazy Nil) -> Nil
| (lazy (Cons (hd, tl))) -> Cons (hd, take (n - 1) tl))
let rec drop n s =
lazy
(match (n, s) with
| 0, _ -> !$s
| _, (lazy Nil) -> Nil
| _, (lazy (Cons (_, tl))) -> !$(drop (n - 1) tl))
let reverse s =
let rec reverse' acc s =
lazy
(match s with
| (lazy Nil) -> !$acc
| (lazy (Cons (hd, tl))) -> !$(reverse' (lazy (Cons (hd, acc))) tl))
in
reverse' (lazy Nil) s
end
open Stream
module BankersQueue : QUEUE = struct
type 'a queue = int * 'a stream * int * 'a stream
let empty = (0, lazy Nil, 0, lazy Nil)
let is_empty (lenf, _, _, _) = lenf = 0
let check ((lenf, f, lenr, r) as q) =
if lenr <= lenf then q else (lenf + lenr, f ++ reverse r, 0, lazy Nil)
let snoc (lenf, f, lenr, r) x = check (lenf, f, lenr + 1, lazy (Cons (x, r)))
let head = function
| _, (lazy Nil), _, _ -> raise Empty
| _, (lazy (Cons (x, _))), _, _ -> x
let tail = function
| _, (lazy Nil), _, _ -> raise Empty
| lenf, (lazy (Cons (_, f'))), lenr, r -> check (lenf - 1, f', lenr, r)
end
module LazyBinomialHeap (Element : ORDERED) : HEAP with module Elem = Element =
struct
module Elem = Element
type tree = Node of int * Elem.t * tree list
type heap = tree list Lazy.t
let empty = lazy []
let is_empty ts = !$ts = []
let rank (Node (r, _, _)) = r
let root (Node (_, x, _)) = x
let link (Node (r, x1, c1) as t1) (Node (_, x2, c2) as t2) =
if Elem.leq x1 x2 then Node (r + 1, x1, t2 :: c1)
else Node (r + 1, x2, t1 :: c2)
let rec ins_tree t ts =
match (t, ts) with
| _, [] -> [ t ]
| t, t' :: ts' ->
if rank t < rank t' then t :: ts else ins_tree (link t t') ts'
let rec mrg ts1 ts2 =
match (ts1, ts2) with
| _, [] -> ts1
| [], _ -> ts2
| t1 :: ts1', t2 :: ts2' ->
if rank t1 < rank t2 then t1 :: mrg ts1' ts2
else if rank t2 < rank t1 then t2 :: mrg ts1 ts2'
else ins_tree (link t1 t2) (mrg ts1' ts2')
(* fun lazy *)
let insert x ts = lazy (ins_tree (Node (0, x, [])) !$ts)
(* fun lazy *)
let merge ts1 ts2 = lazy (mrg !$ts1 !$ts2)
let rec remove_min_tree = function
| [] -> raise Empty
| [ t ] -> (t, [])
| t :: ts ->
let t', ts' = remove_min_tree ts in
if Elem.leq (root t) (root t') then (t, ts) else (t', t :: ts')
let find_min ts =
let t, _ = remove_min_tree !$ts in
root t
(* fun lazy *)
let delete_min ts =
let Node (_, _, ts1), ts2 = remove_min_tree !$ts in
lazy (mrg (List.rev ts1) ts2)
end
module PhysicistsQueue : QUEUE = struct
type 'a queue = 'a list * int * 'a list Lazy.t * int * 'a list
let empty = ([], 0, lazy [], 0, [])
let is_empty (_, lenf, _, _, _) = lenf = 0
let checkw = function
| [], lenf, f, lenr, r -> (!$f, lenf, f, lenr, r)
| q -> q
let check ((_, lenf, f, lenr, r) as q) =
if lenr <= lenf then checkw q
else
let f' = !$f in
checkw (f', lenf + lenr, lazy (f' @ List.rev r), 0, [])
let snoc (w, lenf, f, lenr, r) x = check (w, lenf, f, lenr + 1, x :: r)
let head = function [], _, _, _, _ -> raise Empty | x :: _, _, _, _, _ -> x
let tail = function
| [], _, _, _, _ -> raise Empty
| _ :: w, lenf, f, lenr, r ->
check (w, lenf - 1, lazy (List.tl !$f), lenr, r)
end
module type SORTABLE = sig
module Elem : ORDERED
type sortable
val empty : sortable
val add : Elem.t -> sortable -> sortable
val sort : sortable -> Elem.t list
end
module BottomUpMergeSort (Element : ORDERED) :
SORTABLE with module Elem = Element = struct
module Elem = Element
type sortable = int * Elem.t list list Lazy.t
let rec mrg xs ys =
match (xs, ys) with
| [], _ -> ys
| _, [] -> xs
| x :: xs', y :: ys' ->
if Elem.leq x y then x :: mrg xs' ys else y :: mrg xs ys'
let empty = (0, lazy [])
let add x (size, segs) =
let rec add_seg seg size segs =
if size mod 2 = 0 then seg :: segs
else add_seg (mrg seg (List.hd segs)) (size / 2) (List.tl segs)
in
(size + 1, lazy (add_seg [ x ] size !$segs))
let sort (_, segs) =
let rec mrg_all xs = function
| [] -> xs
| seg :: segs -> mrg_all (mrg xs seg) segs
in
mrg_all [] !$segs
end
module LazyPairingHeap (Element : ORDERED) : HEAP with module Elem = Element =
struct
module Elem = Element
type heap = E | T of Elem.t * heap * heap Lazy.t
let empty = E
let is_empty h = h = E
let rec merge a b =
match (a, b) with
| _, E -> a
| E, _ -> b
| T (x, _, _), T (y, _, _) -> if Elem.leq x y then link a b else link b a
and link h a =
match h with
| T (x, E, m) -> T (x, a, m)
| T (x, b, m) -> T (x, E, lazy (merge (merge a b) !$m))
| _ -> impossible_pat "link"
let insert x a = merge (T (x, E, lazy E)) a
let find_min = function E -> raise Empty | T (x, _, _) -> x
let delete_min = function E -> raise Empty | T (_, a, b) -> merge a !$b
end