-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresults_histograms.py
executable file
·328 lines (267 loc) · 13.3 KB
/
results_histograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import sys
if sys.platform[:5] == 'linux':
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import astropy.io.fits as pyfits
import astropy.io.ascii as ascii
import scipy
import pandas as pd
from scipy.ndimage.filters import gaussian_filter as gauss1D
from scipy import optimize
from pylab import figure, cm
from matplotlib.colors import LogNorm
from lenstronomy.Workflow.fitting_sequence import FittingSequence
from lenstronomy.Util.param_util import ellipticity2phi_q
from lenstronomy.Util.param_util import shear_cartesian2polar
from os import walk
from os import listdir
from os.path import isfile, join, exists
from Lens_Modeling_Auto.auto_modeling_functions import df_2_dict
from math import ceil
from copy import deepcopy
#### Create dataframe from csv file(s) ####
path = '/Users/markmaus/Desktop/Physics_EPFL/Specialization_Project/CFIS_lenses/Sure_Lens/'
csv_path = path + 'SIE_lens/results_May31/'
results_path = path + 'SIE_lens/results_May31'
# path = '/Users/markmaus/Desktop/Physics_EPFL/Specialization_Project/lens_candidates/Group1/'
# csv_path = path + 'SIE_lens/results_Jun1/'
# results_path = path + 'SIE_lens/results_Jun1'
# path = '/Users/markmaus/Desktop/Physics_EPFL/Specialization_Project/ringcatalog/'
# csv_path = path + 'results_May3/'
# results_path = path + 'results_May3'
if not exists(results_path):
os.mkdir(results_path)
lens_model_list = ['SIE','SHEAR']
# lens_model_list = ['PEMD','SHEAR']
source_model_list = ['SERSIC_ELLIPSE']
lens_light_model_list = ['SERSIC_ELLIPSE']
band_list = ['g','r','i']
# band_list = ['r']
df = pd.read_csv(csv_path + 'full_results_sorted.csv',delimiter =',')
add_path = '/Users/markmaus/Desktop/Physics_EPFL/Specialization_Project/CFIS_lenses/Sure_Lens/SIE_lens/new_lenses/results_new_lenses_3/'
df_add = pd.read_csv(add_path + 'full_results_sorted.csv',delimiter =',')
# df_final = pd.concat([df_final, df_add])
df_final = df.append(df_add.loc[1].transpose())
df_final=df_final.reset_index(drop=True)
dict_results = df_2_dict(df_final,band_list,lens_model_list,source_model_list,lens_light_model_list)
# print(data_dict['shear']['gamma'])
num_plots = 1
cols = 9
for prof in lens_model_list:
results = np.array(list(dict_results['lens'][prof].items()))
print(len(results))
num_plots += (len(results) - 2)
# for band in band_list:
# for prof in source_model_list:
# key = '{} Band: {}'.format(band,prof)
# results = np.array(list(dict_results['source'][key].items()))
# print(len(results))
# num_plots += (len(results) - 2)
# for prof in lens_light_model_list:
# key = '{} Band: {}'.format(band,prof)
# results = np.array(list(dict_results['lens_light'][key].items()))
# print(len(results))
# num_plots += (len(results) - 2)
for prof in source_model_list:
key = '{} Band: {}'.format(band_list[0],prof)
results = np.array(list(dict_results['source'][key].items()))
print(len(results))
num_plots += (len(results) - 2)
for prof in lens_light_model_list:
key = '{} Band: {}'.format(band_list[0],prof)
results = np.array(list(dict_results['lens_light'][key].items()))
print(len(results))
num_plots += (len(results) - 2)
print(num_plots)
rows = ceil(num_plots / cols)
f,axes = plt.subplots(rows,cols, figsize = (cols*5,rows*5))
f.subplots_adjust(hspace=0.5,wspace=0.5)
count = 0
ax = axes.ravel()
ax[0].hist(dict_results['Reduced Chi^2'][dict_results['Reduced Chi^2'] < 5])
ax[0].set_title('Reduced Chi^2')
ax[0].set_xlabel('Value')
ax[0].set_ylabel('# Occurences')
count +=1
for prof in lens_model_list:
results = np.array(list(dict_results['lens'][prof].items()))
for i in range(len(results)):
if (results[i][0] == 'ra_0') or (results[i][0] == 'dec_0') or (results[i][0] == 'center_x') or (results[i][0] == 'center_y'):
continue
ax[count].hist(results[i][1][dict_results['Reduced Chi^2'] < 1.5])
ax[count].set_title('Lens \n {} \n {}'.format(prof,results[i][0]))
ax[count].set_xlabel('Value')
ax[count].set_ylabel('# Occurences')
count += 1
# for band in band_list:
# for prof in source_model_list:
# key = '{} Band: {}'.format(band,prof)
# results = np.array(list(dict_results['source'][key].items()))
# for i in range(len(results)):
# if (results[i][0] == 'center_x') or (results[i][0] == 'center_y'):
# continue
# ax[count].hist(results[i][1][dict_results['Reduced Chi^2'] < 1.5])
# ax[count].set_title('{} Band: Source \n {} \n {}'.format(band,prof,results[i][0]))
# ax[count].set_xlabel('Value')
# ax[count].set_ylabel('# Occurences')
# count += 1
# for prof in lens_light_model_list:
# key = '{} Band: {}'.format(band,prof)
# results = np.array(list(dict_results['lens_light'][key].items()))
# for i in range(len(results)):
# if (results[i][0] == 'center_x') or (results[i][0] == 'center_y'):
# continue
# ax[count].hist(results[i][1][dict_results['Reduced Chi^2'] < 1.5])
# ax[count].set_title('{} Band: Lens Light \n {} \n {}'.format(band,prof,results[i][0]))
# ax[count].set_xlabel('Value')
# ax[count].set_ylabel('# Occurences')
# count += 1
for prof in source_model_list:
key0 = '{} Band: {}'.format(band_list[0],prof)
source_params = np.array(list(dict_results['source'][key].items()))[:,0]
for i,param in enumerate(source_params):
if (param == 'center_x') or (param == 'center_y'):
continue
band_keys = []
for band in band_list:
key = '{} Band: {}'.format(band,prof)
band_keys.append(key)
# results = np.array(list(dict_results['source'][key].items()))
ax[count].hist([dict_results['source'][key][param][dict_results['Reduced Chi^2'] < 1.5] for key in band_keys],label=[b for b in band_list])
ax[count].set_title('Source \n {} \n {}'.format(prof,param))
ax[count].set_xlabel('Value')
ax[count].set_ylabel('# Occurences')
ax[count].legend()
count += 1
for prof in lens_light_model_list:
key0 = '{} Band: {}'.format(band_list[0],prof)
lens_light_params = np.array(list(dict_results['lens_light'][key].items()))[:,0]
for i,param in enumerate(lens_light_params):
if (param == 'center_x') or (param == 'center_y'):
continue
band_keys = []
for band in band_list:
key = '{} Band: {}'.format(band,prof)
band_keys.append(key)
# results = np.array(list(dict_results['source'][key].items()))
ax[count].hist([dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] < 1.5] for key in band_keys],label=[b for b in band_list])
ax[count].set_title('lens light \n {} \n {}'.format(prof,param))
ax[count].set_xlabel('Value')
ax[count].set_ylabel('# Occurences')
ax[count].legend()
count += 1
# R_source = deepcopy(dict_results['source']['r Band: SERSIC_ELLIPSE']['R_sersic'][dict_results['Reduced Chi^2'] < 1.5])
# ax[count].hist(R_source[R_source <= 2])
# ax[count].set_title('r Band: Source \n SERSIC_ELLIPSE \n R_sersic')
# ax[count].set_xlabel('Value')
# ax[count].set_ylabel('# Occurences')
# count += 1
for i,a in enumerate(ax):
if i >= count:
a.set_axis_off()
f.savefig(results_path + '/histograms_combine_bands',dpi = 500)
plt.close(f)
#custom figs
fig,axes = plt.subplots(3,2, figsize = (10,15))
ax = axes.ravel()
fontsize = 20
cut = 1.5
count = 0
prof = 'SIE'
param = 'theta_E'
ax[count].hist([dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] <= cut],
dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] > cut]],
label = [r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['green','red'],bins=20,histtype='step',lw=2)
# ax[count].hist([dict_results['lens'][prof][param],dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] <= cut],
# dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] > cut]],
# label = ['All results',r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)],
# color = ['blue','green','red'])
ax[count].set_title('Einstein Radius ($R_E$)',fontsize=fontsize)
ax[count].set_xlabel(r'$R_E$ (arcsec)',fontsize=fontsize)
ax[count].set_ylabel('# Occurences',fontsize=fontsize)
ax[count].tick_params(axis='x', labelsize=fontsize)
ax[count].tick_params(axis='y', labelsize=fontsize)
ax[count].legend(fontsize=fontsize)
count += 1
prof = 'SHEAR'
param = 'gamma'
ax[count].hist([dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] <= cut],
dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] > cut]],
label = [r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['green','red'],bins=20,histtype='step',lw=2)
# ax[count].hist([dict_results['lens'][prof][param],dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] <= cut],
# dict_results['lens'][prof][param][dict_results['Reduced Chi^2'] > cut]],
# label = ['All results',r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['blue','green','red'])
ax[count].set_title('Shear Strength ($\gamma_{ext}$)', fontsize=fontsize)
ax[count].set_xlabel(r'$\gamma_{ext}$',fontsize=fontsize)
ax[count].set_ylabel('# Occurences',fontsize=fontsize)
ax[count].tick_params(axis='x', labelsize=fontsize)
ax[count].tick_params(axis='y', labelsize=fontsize)
ax[count].legend(fontsize=fontsize)
count += 1
prof = 'SERSIC_ELLIPSE'
names = [r'$R_{eff}$ (arcsec)',r'$n_s$']
for i,param in enumerate(['R_sersic','n_sersic']):
band = 'r'
key = '{} Band: {}'.format(band,prof)
ax[count].hist([dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] <= cut],
dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] > cut]],
label = [r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['green','red'],bins=20,histtype='step',lw=2)
# ax[count].hist([dict_results['lens_light'][key][param],
# dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] <= cut],
# dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] > cut]],
# label = ['All results',r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)],
# color = ['blue','green','red'])
ax[count].set_title('Lens Light: {}'.format(names[i]), fontsize=fontsize)
ax[count].set_xlabel('{}'.format(names[i]),fontsize=fontsize)
ax[count].set_ylabel('# Occurences',fontsize=fontsize)
ax[count].tick_params(axis='x', labelsize=fontsize)
ax[count].tick_params(axis='y', labelsize=fontsize)
ax[count].legend(fontsize=fontsize)
count += 1
# for param in ['R_sersic','n_sersic']:
# band_keys = []
# for band in band_list:
# key = '{} Band: {}'.format(band,prof)
# band_keys.append(key)
# ax[count].hist([dict_results['source'][key][param][dict_results['Reduced Chi^2'] < 1.5] for key in band_keys],label=[b for b in band_list])
# ax[count].set_title('Source Light: {} \n {}'.format(prof,param))
# ax[count].set_xlabel('Value')
# ax[count].set_ylabel('# Occurences')
# # ax[count].legend()
# count += 1
for i,param in enumerate(['R_sersic','n_sersic']):
band = 'r'
key = '{} Band: {}'.format(band,prof)
ax[count].hist([dict_results['source'][key][param][dict_results['Reduced Chi^2'] <= cut],
dict_results['source'][key][param][dict_results['Reduced Chi^2'] > cut]],
label = [r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['green','red'],bins=20,histtype='step',lw=2)
# ax[count].hist([dict_results['source'][key][param],
# dict_results['source'][key][param][dict_results['Reduced Chi^2'] <= cut],
# dict_results['source'][key][param][dict_results['Reduced Chi^2'] > cut]],
# label = ['All results',r'$\chi^2 \leq {}$'.format(cut),r'$\chi^2 > {}$'.format(cut)], color = ['blue','green','red'])
ax[count].set_title('Source Light: {}'.format(names[i]), fontsize=fontsize)
ax[count].set_xlabel('{}'.format(names[i]),fontsize=fontsize)
ax[count].set_ylabel('# Occurences',fontsize=fontsize)
ax[count].tick_params(axis='x', labelsize=fontsize)
ax[count].tick_params(axis='y', labelsize=fontsize)
ax[count].legend(fontsize=fontsize)
count += 1
# for param in ['R_sersic','n_sersic']:
# band_keys = []
# for band in band_list:
# key = '{} Band: {}'.format(band,prof)
# band_keys.append(key)
# ax[count].hist([dict_results['lens_light'][key][param][dict_results['Reduced Chi^2'] < 1.5] for key in band_keys],label=[b for b in band_list])
# ax[count].set_title('Lens Light: {} \n {}'.format(prof,param))
# ax[count].set_xlabel('Value')
# ax[count].set_ylabel('# Occurences')
# # ax[count].legend()
# count += 1
fig.subplots_adjust(hspace=None,wspace=0.5)
fig.tight_layout()
fig.savefig(results_path + '/histograms_custom_bins20.pdf',dpi = 100)
plt.close(fig)