-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimize_dynamic.py
executable file
·56 lines (47 loc) · 3.12 KB
/
optimize_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from Lens_Modeling_Auto.auto_modeling_functions import optParams
from Lens_Modeling_Auto.auto_modeling_functions import removekeys
from Lens_Modeling_Auto.auto_modeling_functions import prepareFit
from Lens_Modeling_Auto.auto_modeling_functions import runFit
from Lens_Modeling_Auto.auto_modeling_functions import get_kwarg_names
from lenstronomy.Workflow.fitting_sequence import FittingSequence
############ Set parameters to optimize (as a list if multiple PSOs are desired) ############
model_kwarg_names = get_kwarg_names(lens_model_list,source_model_list,lens_light_model_list,None)
opt_params = [{'kwargs_lens': [['center_x','center_y'],[]],
'kwargs_source': [[]],
'kwargs_lens_light': [[]]},
{'kwargs_lens': [[],[]],
'kwargs_source': [['center_x','center_y']],
'kwargs_lens_light': [[]]},
{'kwargs_lens': [[],[]],
'kwargs_source': [[]],
'kwargs_lens_light': [['center_x','center_y']]}]
for i in range(len(opt_params)):
print('Free parameters:', opt_params[i])
kwargs_init, kwargs_fixed = optParams(kwargs_result,opt_params[i],model_kwarg_names)
lens_params = [kwargs_init['kwargs_lens'], kwargs_lens_sigma, kwargs_fixed['kwargs_lens'], kwargs_lower_lens,
kwargs_upper_lens]
source_params = [kwargs_init['kwargs_source'], kwargs_source_sigma, kwargs_fixed['kwargs_source'], kwargs_lower_source,
kwargs_upper_source]
lens_light_params = [kwargs_init['kwargs_lens_light'], kwargs_lens_light_sigma, kwargs_fixed['kwargs_lens_light'],
kwargs_lower_lens_light, kwargs_upper_lens_light]
kwargs_params = {'lens_model': lens_params,
'source_model': source_params,
'lens_light_model': lens_light_params}
print('The lens, source, and lens light modeling parameters are')
print('lens model: ', kwargs_params['lens_model'])
print('\n')
print('source model: ', kwargs_params['source_model'])
print('\n')
print('lens light model: ', kwargs_params['lens_light_model'])
print('\n')
print('-------------------------------------------------------------------')
print('\n')
print('I will now begin the PSO:')
fitting_kwargs_list = [['PSO', {'sigma_scale': 0.5, 'n_particles': 300, 'n_iterations': 1000,'threadCount': 1}]]
kwargs_likelihood, kwargs_model, kwargs_data_joint, multi_band_list, kwargs_constraints = prepareFit(kwargs_data, kwargs_psf,
lens_model_list, source_model_list,
lens_light_model_list,
image_mask_list = mask_list)
chain_list, kwargs_result = runFit(fitting_kwargs_list, kwargs_params,
kwargs_likelihood, kwargs_model,
kwargs_data_joint, kwargs_constraints = kwargs_constraints)