-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathcausal_convolution_layer.py
45 lines (34 loc) · 1.16 KB
/
causal_convolution_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python
# coding: utf-8
import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
class CausalConv1d(torch.nn.Conv1d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True):
super(CausalConv1d, self).__init__(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias)
self.__padding = (kernel_size - 1) * dilation
def forward(self, input):
return super(CausalConv1d, self).forward(F.pad(input, (self.__padding, 0)))
class context_embedding(torch.nn.Module):
def __init__(self,in_channels=1,embedding_size=256,k=5):
super(context_embedding,self).__init__()
self.causal_convolution = CausalConv1d(in_channels,embedding_size,kernel_size=k)
def forward(self,x):
x = self.causal_convolution(x)
return F.tanh(x)