-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_experiment.py
213 lines (183 loc) · 8.15 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import errno
import json
import os
import sys
import random
from copy import deepcopy
from importlib import import_module
import numpy as np
import torch
from models.agent import Agent
# FOR PROFILING SPEED OF CODE
# import cProfile as profile
# pr = profile.Profile()
# pr.disable()
## TODO
# 1. check that make_jobs in a batch == make_jobs single (seeds are set properly)
# DONE 2. make sure that rerunning the same job is reproduible
# 3. make sure that rerunning the same job but with other stuff in between is reproducible
# DONE 4. check that results here == results in torch echo
ECHO_DIR = os.path.dirname(os.path.realpath(__file__))
def rm_mkdir(dir):
if os.path.isdir(dir):
import shutil
shutil.rmtree(dir)
os.makedirs(dir)
return
def prepare_environment(params):
"""
Sets random seeds for reproducible experiments. This may not work as expected
if you use this from within a python project in which you have already imported Pytorch.
If you use the scripts/run_model.py entry point to training models with this library,
your experiments should be reasonably reproducible. If you are using this from your own
project, you will want to call this function before importing Pytorch. Complete determinism
is very difficult to achieve with libraries doing optimized linear algebra due to massively
parallel execution, which is exacerbated by using GPUs.
Parameters
----------
params: Params object or dict, required.
A ``Params`` object or dict holding the json parameters.
"""
seed = params.pop("random_seed", 13370)
numpy_seed = params.pop("numpy_seed", 1337)
torch_seed = params.pop("pytorch_seed", 133)
if seed is not None:
random.seed(seed)
if numpy_seed is not None:
np.random.seed(numpy_seed)
if torch_seed is not None:
torch.manual_seed(torch_seed)
# Seed all GPUs with the same seed if available.
if torch.cuda.is_available():
torch.cuda.manual_seed_all(torch_seed)
device = torch.device("cpu")
torch.set_num_threads(1)
sys.path.append(ECHO_DIR)
# animated_plot()
def run(jobs_file, job_id=None, plot=False, echo_symlink_to=None, job_date=None):
# pr.enable()
with open(jobs_file) as jfile:
jobs = json.load(jfile)
if isinstance(jobs, dict):
# ToDo: make this more explicit, but basically, you can give me a json of SINGLE param dict, aka rerun a
# single job that was spit out (ex: echo/experiments/gradient_passing/QPSK_neural_and_neural/results/0.json)
jobs = [jobs]
elif job_id is not None: # 0 = False you dummy
plot = plot
jobs = [jobs[job_id]]
else:
# NO PLOTTING IF YOU ARE RUNNING A BUNCH OF JOBS...NO!
plot = False
for params in jobs:
params_copy = deepcopy(params)
keys = params.keys()
agent_keys = [key for key in keys if 'agent' in key]
meta = params.pop('__meta__')
verbose = meta['verbose']
job_id = meta['job_id']
trial_num = meta['trial_num']
protocol = meta['protocol']
experiment_name = meta['experiment_name']
experiment_dir = os.path.abspath(os.path.join(ECHO_DIR, 'experiments', protocol, experiment_name))
results_dir = os.path.abspath(os.path.join(experiment_dir, 'results'))
# DEAL WITH SYMLINKING FOR RUNNING ON BRC
if echo_symlink_to is not None:
assert os.path.isdir(echo_symlink_to), "Invalid symlink path"
if os.path.isdir(results_dir) and not os.path.islink(results_dir):
old_results_dir = os.path.abspath(os.path.join(experiment_dir, 'old_results'))
os.makedirs(old_results_dir, exist_ok=True)
n = len(os.listdir(old_results_dir))
os.rename(results_dir, os.path.abspath(os.path.join(old_results_dir, '%i' % n)))
_experiment_dir = os.path.abspath(os.path.join(echo_symlink_to, 'experiments', protocol, experiment_name))
job_date = "results" + (job_date if job_date is not None else "")
_results_dir = os.path.abspath(os.path.join(_experiment_dir, job_date))
os.makedirs(_results_dir, exist_ok=True)
if os.path.islink(results_dir) and os.readlink(results_dir) != _results_dir:
try:
os.remove(results_dir)
except OSError:
pass
if not os.path.islink(results_dir):
try:
os.symlink(_results_dir, results_dir)
except OSError as e:
if e.errno == errno.EEXIST:
assert os.readlink(results_dir) == _results_dir
else:
raise e
else:
os.makedirs(results_dir, exist_ok=True)
results_file = '%s/%i.npy' % (results_dir, job_id)
if os.path.isfile(results_file) and plot:
print("result already found")
else:
params_file = '%s/%i.json' % (results_dir, job_id)
with open(params_file, 'w') as pf:
pf.write(json.dumps(params_copy, indent=4))
if verbose:
print("...running run_experiment.py with:", protocol, experiment_name)
prepare_environment(meta)
# Load Agents Based on Model
agents = []
for agent_key in agent_keys:
agent_params = params.pop(agent_key)
agents += [Agent(agent_dict=agent_params, name=agent_key, verbose=verbose)]
params['agents'] = agents
# Load Protocol and Train (Results callback will collect results)
module_name = 'protocols.%s.train' % (protocol)
train = getattr(import_module(module_name), 'train')
info, results = train(**params,
verbose=verbose,
plot_callback=lambda **kwargs: None)
# AFTER DONE TRAINING SAVE RESULTS FILE
results.insert(0, {'protocol': protocol,
'trial_num': trial_num,
'experiment_name': experiment_name,
**info})
np.save(results_file, results)
if verbose:
print("...params for this job have been saved into:", params_file)
print("...results for this job have been saved into:", results_file)
# pr.disable()
# pr.dump_stats('%s%i.pstat'% (experiment_name,job_id) )
if plot:
from importlib import util
if util.find_spec('matplotlib') is not None:
from plot_experiment import animated_plot
animated_plot(results=results)
else:
print("Cannot plot; matplotlib not found")
return ()
def main():
import argparse, textwrap
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
# In outer section of code
parser = MyParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
prog='python run_experiment.py',
epilog=textwrap.dedent('''\
TRY THIS:
python run_experiment.py\\
--jobs_file=./experiments/shared_preamble/QPSK_neural_vs_clone/jobs.json\\
--job_id=0\\
'''))
requiredNamed = parser.add_argument_group('required named arguments')
requiredNamed.add_argument("--jobs_file", required=True)
requiredNamed.add_argument("--job_id", type=int, required=False, default=None)
parser.add_argument("--plot", required=False, action='store_true')
parser.add_argument("--echo_symlink_to", required=False, default=None)
parser.add_argument("--job_date", required=False, type=str, default=None)
args = parser.parse_args()
run(jobs_file=args.jobs_file, job_id=args.job_id, plot=args.plot, echo_symlink_to=args.echo_symlink_to,
job_date=args.job_date)
if __name__ == '__main__':
try:
main()
except AssertionError or Exception:
import sys, traceback
traceback.print_exc()
sys.exit(3)