-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path029.js
46 lines (38 loc) · 1.13 KB
/
029.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
// 2^2=4, 2^3=8, 2^4=16, 2^5=32
// 3^2=9, 3^3=27, 3^4=81, 3^5=243
// 4^2=16, 4^3=64, 4^4=256, 4^5=1024
// 5^2=25, 5^3=125, 5^4=625, 5^5=3125
// If they are then placed in numerical order, with any repeats removed, we get
// the following sequence of 15 distinct terms:
// 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
// How many distinct terms are in the sequence generated by a^b for
// 2 <= a <= 100 and 2 <= b <= 100?
function power(n, power) {
var digits = [1];
while (power--) {
var cr = 0;
for (var i = 0; i < digits.length; i++) {
var num = n * digits[i] + cr;
digits[i] = num % 10;
cr = Math.floor(num/10);
}
while (cr > 0) {
digits.push(cr % 10);
cr = Math.floor(cr/10);
}
}
return digits.reverse().join('');
}
function distinctPowersNum(min, max) {
var out = [];
for (var n = 2; n <= max; n++) {
for (var pow = 2; pow<= max; pow++) {
out.push( power(n, pow) );
}
}
return out.filter(function(val, i, self) {
return self.indexOf(val) === i;
}).length;
}
console.log( distinctPowersNum(2, 100) );