-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsnn_layers.py
268 lines (231 loc) · 8.99 KB
/
snn_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn
import torch.nn.functional as F
import global_v as glv
import utils
dt = 5
a = 0.25
aa = 0.5
Vth = 0.2
tau = 0.25
def init_layer_config(layer_config):
global dt, a, aa, Vth, tau
dt = layer_config.get('dt', dt)
a = layer_config.get('a', a)
aa = layer_config.get('aa', aa)
Vth = layer_config.get('Vth', Vth)
tau = layer_config.get('tau', tau)
class SpikeAct(torch.autograd.Function):
"""
Implementation of the spiking activation function with an approximation of gradient.
"""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
# if input = u > Vth then output = 1
output = torch.gt(input, Vth)
return output.float()
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
grad_input = grad_output.clone()
# hu is an approximate func of df/du
sg = glv.layer_config.get('surrogate_function', None)
if sg == 'arctan':
width = glv.layer_config.get('surrogate_width', 1.0)
hu = 1.0 / (1.0 + width * (input - Vth)**2)
elif sg == 'triangle':
width = glv.layer_config.get('surrogate_width', aa)
hu = torch.clamp(1 - abs(input - Vth) / width, min=0.0)
elif sg == 'rectangle' or sg is None:
width = glv.layer_config.get('surrogate_width', aa)
hu = abs(input - Vth) < aa
else:
raise ValueError(f'Unsupported surrogate function: {sg}')
hu = hu.float() / (2 * aa)
return grad_input * hu
class LIFSpike(nn.Module):
"""
Generates spikes based on LIF module. It can be considered as an activation function and is used similar to ReLU. The input tensor needs to have an additional time dimension, which in this case is on the last dimension of the data.
"""
def __init__(self, soft_reset=None):
super(LIFSpike, self).__init__()
self.soft_reset = utils.default(soft_reset, glv.soft_reset)
self.detach_reset = glv.layer_config.get('detach_reset', False)
if self.soft_reset is None:
import warnings
warnings.warn(
'Soft reset or hard reset is not specified. Hard reset will be used.'
)
self.soft_reset = False
def forward(self, x):
nsteps = x.shape[-1]
u = torch.zeros(x.shape[:-1], device=x.device)
out = torch.zeros(x.shape, device=x.device)
for step in range(nsteps):
u, out[..., step] = self.state_update(u, out[...,
max(step - 1, 0)],
x[..., step])
return out
def state_update(self, u_t_n1, o_t_n1, W_mul_o_t1_n, decay=None):
decay = utils.default(decay, tau)
if self.detach_reset:
o_t_n1 = o_t_n1.detach()
if self.soft_reset:
u_t1_n1 = decay * (u_t_n1 - o_t_n1 * Vth) + W_mul_o_t1_n
else:
u_t1_n1 = decay * u_t_n1 * (1 - o_t_n1) + W_mul_o_t1_n
o_t1_n1 = SpikeAct.apply(u_t1_n1)
return u_t1_n1, o_t1_n1
class tdLinear(nn.Linear):
def __init__(self,
in_features,
out_features,
bias=True,
bn=None,
spike=None):
assert type(
in_features
) == int, 'inFeatures should not be more than 1 dimesnion. It was: {}'.format(
in_features.shape)
assert type(
out_features
) == int, 'outFeatures should not be more than 1 dimesnion. It was: {}'.format(
out_features.shape)
super(tdLinear, self).__init__(in_features, out_features, bias=bias)
self.bn = bn
self.spike = spike
def forward(self, x):
"""
x : (N,*,C,T)
"""
x = x.transpose(-1, -2) # (N, *, T, C)
y = F.linear(x, self.weight, self.bias)
y = y.transpose(-1, -2) # (N, *, C, T)
if self.bn is not None:
y = y[:, :, None, None, :]
y = self.bn(y)
y = y[:, :, 0, 0, :]
if self.spike is not None:
y = self.spike(y)
return y
class tdConv(nn.Conv3d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
bn=None,
spike=None,
is_first_conv=False):
# kernel
if type(kernel_size) == int:
kernel = (kernel_size, kernel_size, 1)
elif len(kernel_size) == 2:
kernel = (kernel_size[0], kernel_size[1], 1)
else:
raise Exception(
'kernelSize can only be of 1 or 2 dimension. It was: {}'.format(
kernel_size.shape))
# stride
if type(stride) == int:
stride = (stride, stride, 1)
elif len(stride) == 2:
stride = (stride[0], stride[1], 1)
else:
raise Exception(
'stride can be either int or tuple of size 2. It was: {}'.
format(stride.shape))
# padding
if type(padding) == int:
padding = (padding, padding, 0)
elif len(padding) == 2:
padding = (padding[0], padding[1], 0)
else:
raise Exception(
'padding can be either int or tuple of size 2. It was: {}'.
format(padding.shape))
# dilation
if type(dilation) == int:
dilation = (dilation, dilation, 1)
elif len(dilation) == 2:
dilation = (dilation[0], dilation[1], 1)
else:
raise Exception(
'dilation can be either int or tuple of size 2. It was: {}'.
format(dilation.shape))
super().__init__(in_channels,
out_channels,
kernel,
stride,
padding,
dilation,
groups,
bias=bias)
self.bn = bn
self.spike = spike
self.is_first_conv = is_first_conv
def forward(self, x):
x = F.conv3d(x, self.weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
if self.bn is not None:
x = self.bn(x)
if self.spike is not None:
x = self.spike(x)
return x
class tdBatchNorm(nn.BatchNorm2d):
"""
Implementation of tdBN. Link to related paper: https://arxiv.org/pdf/2011.05280. In short it is averaged over the time domain as well when doing BN.
Args:
num_features (int): same with nn.BatchNorm2d
eps (float): same with nn.BatchNorm2d
momentum (float): same with nn.BatchNorm2d
alpha (float): an addtional parameter which may change in resblock.
affine (bool): same with nn.BatchNorm2d
track_running_stats (bool): same with nn.BatchNorm2d
"""
def __init__(self,
num_features,
eps=1e-05,
momentum=0.1,
alpha=1,
affine=True,
track_running_stats=True):
super(tdBatchNorm, self).__init__(num_features, eps, momentum, affine,
track_running_stats)
self.alpha = alpha
def forward(self, input):
exponential_average_factor = 0.0
if self.training and self.track_running_stats:
if self.num_batches_tracked is not None:
self.num_batches_tracked += 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / float(
self.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = self.momentum
# calculate running estimates
if self.training:
mean = input.mean([0, 2, 3, 4])
# use biased var in train
var = input.var([0, 2, 3, 4], unbiased=False)
n = input.numel() / input.size(1)
with torch.no_grad():
self.running_mean = exponential_average_factor * mean\
+ (1 - exponential_average_factor) * self.running_mean
# update running_var with unbiased var
self.running_var = exponential_average_factor * var * n / (n - 1)\
+ (1 - exponential_average_factor) * self.running_var
else:
mean = self.running_mean
var = self.running_var
input = self.alpha * Vth * (input - mean[None, :, None, None, None]) / (
torch.sqrt(var[None, :, None, None, None] + self.eps))
if self.affine:
input = input * self.weight[None, :, None, None, None] + self.bias[
None, :, None, None, None]
return input