-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDESCRIPTION
66 lines (66 loc) · 1.86 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
Package: powerly
Title: Sample Size Analysis for Psychological Networks and More
Version: 1.8.6
Authors@R:
person(given = "Mihai",
family = "Constantin",
role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "0000-0002-6460-0107"))
Description: An implementation of the sample size computation method for network
models proposed by Constantin et al. (2021) <doi:10.31234/osf.io/j5v7u>.
The implementation takes the form of a three-step recursive algorithm
designed to find an optimal sample size given a model specification and a
performance measure of interest. It starts with a Monte Carlo simulation
step for computing the performance measure and a statistic at various sample
sizes selected from an initial sample size range. It continues with a
monotone curve-fitting step for interpolating the statistic across the entire
sample size range. The final step employs stratified bootstrapping to quantify
the uncertainty around the fitted curve.
License: MIT + file LICENSE
URL: https://powerly.dev
BugReports: https://github.com/mihaiconstantin/powerly/issues
Imports:
R6,
progress,
parallel,
splines2,
quadprog,
bootnet,
qgraph,
ggplot2,
rlang,
mvtnorm,
patchwork
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.1
Collate:
'Backend.R'
'Basis.R'
'Model.R'
'GgmModel.R'
'Interpolation.R'
'Spline.R'
'StepThree.R'
'StepTwo.R'
'Statistic.R'
'PowerStatistic.R'
'StatisticFactory.R'
'ModelFactory.R'
'StepOne.R'
'Range.R'
'Method.R'
'QuadprogSolver.R'
'Solver.R'
'SolverFactory.R'
'Validation.R'
'constants.R'
'exports.R'
'helpers.R'
'logo.R'
'powerly-package.R'
Suggests:
testthat (>= 3.0.0)
Config/testthat/edition: 3