-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
505 lines (452 loc) · 20.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#! /usr/bin/env python
# coding=utf-8
# ================================================================
#
# Author : miemie2013
# Created date: 2020-10-15 14:50:03
# Description : pytorch_ppyolo
#
# ================================================================
from collections import deque
import time
import threading
import datetime
from collections import OrderedDict
import os
import json
from config import *
from model.EMA import ExponentialMovingAverage
from model.ppyolo import PPYOLO
from tools.argparser import ArgParser
from tools.cocotools import get_classes, catid2clsid, clsid2catid
from model.decode_np import Decode
from tools.cocotools import eval
from tools.data_process import data_clean, get_samples
from tools.transform import *
from pycocotools.coco import COCO
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def multi_thread_op(i, num_threads, batch_size, samples, context, with_mixup, sample_transforms, batch_transforms,
shape, images, gt_bbox, gt_score, gt_class, target0, target1, target2, n_layers):
for k in range(i, batch_size, num_threads):
for sample_transform in sample_transforms:
if isinstance(sample_transform, MixupImage):
if with_mixup:
samples[k] = sample_transform(samples[k], context)
else:
samples[k] = sample_transform(samples[k], context)
for batch_transform in batch_transforms:
if isinstance(batch_transform, RandomShapeSingle):
samples[k] = batch_transform(shape, samples[k], context)
else:
samples[k] = batch_transform(samples[k], context)
# 整理成ndarray
images[k] = np.expand_dims(samples[k]['image'].astype(np.float32), 0)
gt_bbox[k] = np.expand_dims(samples[k]['gt_bbox'].astype(np.float32), 0)
gt_score[k] = np.expand_dims(samples[k]['gt_score'].astype(np.float32), 0)
gt_class[k] = np.expand_dims(samples[k]['gt_class'].astype(np.int32), 0)
target0[k] = np.expand_dims(samples[k]['target0'].astype(np.float32), 0)
target1[k] = np.expand_dims(samples[k]['target1'].astype(np.float32), 0)
if n_layers > 2:
target2[k] = np.expand_dims(samples[k]['target2'].astype(np.float32), 0)
def read_train_data(cfg,
train_indexes,
train_steps,
train_records,
batch_size,
_iter_id,
train_dic,
use_gpu,
n_layers,
context, with_mixup, with_cutmix, mixup_steps, cutmix_steps, sample_transforms, batch_transforms):
iter_id = _iter_id
num_threads = cfg.train_cfg['num_threads']
while True: # 无限个epoch
# 每个epoch之前洗乱
np.random.shuffle(train_indexes)
for step in range(train_steps):
iter_id += 1
key_list = list(train_dic.keys())
key_len = len(key_list)
while key_len >= cfg.train_cfg['max_batch']:
time.sleep(0.01)
key_list = list(train_dic.keys())
key_len = len(key_list)
# ==================== train ====================
sizes = cfg.randomShape['sizes']
shape = np.random.choice(sizes)
images = [None] * batch_size
gt_bbox = [None] * batch_size
gt_score = [None] * batch_size
gt_class = [None] * batch_size
target0 = [None] * batch_size
target1 = [None] * batch_size
target2 = [None] * batch_size
samples = get_samples(train_records, train_indexes, step, batch_size, iter_id,
with_mixup, with_cutmix, mixup_steps, cutmix_steps)
# sample_transforms用多线程
threads = []
for i in range(num_threads):
t = threading.Thread(target=multi_thread_op, args=(i, num_threads, batch_size, samples, context, with_mixup, sample_transforms, batch_transforms,
shape, images, gt_bbox, gt_score, gt_class, target0, target1, target2, n_layers))
threads.append(t)
t.start()
# 等待所有线程任务结束。
for t in threads:
t.join()
images = np.concatenate(images, 0)
gt_bbox = np.concatenate(gt_bbox, 0)
gt_score = np.concatenate(gt_score, 0)
gt_class = np.concatenate(gt_class, 0)
target0 = np.concatenate(target0, 0)
target1 = np.concatenate(target1, 0)
if n_layers > 2:
target2 = np.concatenate(target2, 0)
images = torch.Tensor(images)
gt_bbox = torch.Tensor(gt_bbox)
gt_score = torch.Tensor(gt_score)
gt_class = torch.Tensor(gt_class)
target0 = torch.Tensor(target0)
target1 = torch.Tensor(target1)
if n_layers > 2:
target2 = torch.Tensor(target2)
if use_gpu:
images = images.cuda()
gt_bbox = gt_bbox.cuda()
gt_score = gt_score.cuda()
gt_class = gt_class.cuda()
target0 = target0.cuda()
target1 = target1.cuda()
if n_layers > 2:
target2 = target2.cuda()
dic = {}
dic['images'] = images
dic['gt_bbox'] = gt_bbox
dic['gt_score'] = gt_score
dic['gt_class'] = gt_class
dic['target0'] = target0
dic['target1'] = target1
if n_layers > 2:
dic['target2'] = target2
train_dic['%.8d'%iter_id] = dic
# ==================== exit ====================
if iter_id == cfg.train_cfg['max_iters']:
return 0
def load_weights(model, model_path):
_state_dict = model.state_dict()
pretrained_dict = torch.load(model_path)
new_state_dict = OrderedDict()
for k, v in pretrained_dict.items():
if k in _state_dict:
shape_1 = _state_dict[k].shape
shape_2 = pretrained_dict[k].shape
if shape_1 == shape_2:
new_state_dict[k] = v
else:
print('shape mismatch in %s. shape_1=%s, while shape_2=%s.' % (k, shape_1, shape_2))
_state_dict.update(new_state_dict)
model.load_state_dict(_state_dict)
def calc_lr(iter_id, cfg):
base_lr = cfg.learningRate['base_lr']
piecewiseDecay = cfg.learningRate['PiecewiseDecay']
linearWarmup = cfg.learningRate['LinearWarmup']
gamma = piecewiseDecay['gamma']
milestones = piecewiseDecay['milestones']
start_factor = linearWarmup['start_factor']
steps = linearWarmup['steps']
n = len(milestones)
for i in range(n, 0, -1):
if iter_id >= milestones[i-1]:
return base_lr * gamma ** i
if iter_id <= steps:
k = (1.0 - start_factor) / steps
factor = start_factor + k * iter_id
return base_lr * factor
return base_lr
if __name__ == '__main__':
parser = ArgParser()
use_gpu = parser.get_use_gpu()
cfg = parser.get_cfg()
print(torch.__version__)
import platform
sysstr = platform.system()
print(torch.cuda.is_available())
# 禁用cudnn就能解决Windows报错问题。Windows用户如果删掉之后不报CUDNN_STATUS_EXECUTION_FAILED,那就可以删掉。
if sysstr == 'Windows':
torch.backends.cudnn.enabled = False
# 打印,确认一下使用的配置
print('\n=============== config message ===============')
print('config file: %s' % str(type(cfg)))
if cfg.train_cfg['model_path'] is not None:
print('pretrained_model: %s' % cfg.train_cfg['model_path'])
else:
print('pretrained_model: None')
print('use_gpu: %s' % str(use_gpu))
print()
# 种类id
_catid2clsid = {}
_clsid2catid = {}
_clsid2cname = {}
with open(cfg.val_path, 'r', encoding='utf-8') as f2:
dataset_text = ''
for line in f2:
line = line.strip()
dataset_text += line
eval_dataset = json.loads(dataset_text)
categories = eval_dataset['categories']
for clsid, cate_dic in enumerate(categories):
catid = cate_dic['id']
cname = cate_dic['name']
_catid2clsid[catid] = clsid
_clsid2catid[clsid] = catid
_clsid2cname[clsid] = cname
class_names = []
num_classes = len(_clsid2cname.keys())
for clsid in range(num_classes):
class_names.append(_clsid2cname[clsid])
# 步id,无需设置,会自动读。
iter_id = 0
# 创建模型
Backbone = select_backbone(cfg.backbone_type)
backbone = Backbone(**cfg.backbone)
IouLoss = select_loss(cfg.iou_loss_type)
iou_loss = IouLoss(**cfg.iou_loss)
iou_aware_loss = None
if cfg.head['iou_aware']:
IouAwareLoss = select_loss(cfg.iou_aware_loss_type)
iou_aware_loss = IouAwareLoss(**cfg.iou_aware_loss)
Loss = select_loss(cfg.yolo_loss_type)
yolo_loss = Loss(iou_loss=iou_loss, iou_aware_loss=iou_aware_loss, **cfg.yolo_loss)
Head = select_head(cfg.head_type)
head = Head(yolo_loss=yolo_loss, is_train=True, nms_cfg=cfg.nms_cfg, **cfg.head)
model = PPYOLO(backbone, head)
_decode = Decode(model, class_names, use_gpu, cfg, for_test=False)
# 加载权重
if cfg.train_cfg['model_path'] is not None:
# 加载参数, 跳过形状不匹配的。
load_weights(model, cfg.train_cfg['model_path'])
strs = cfg.train_cfg['model_path'].split('step')
if len(strs) == 2:
iter_id = int(strs[1][:8])
# 冻结,使得需要的显存减少。低显存的卡建议这样配置。
backbone.freeze()
if use_gpu: # 如果有gpu可用,模型(包括了权重weight)存放在gpu显存里
model = model.cuda()
# optimizer
# 不可以加正则化的参数:norm层(比如bn层、affine_channel层、gn层)的scale、offset;卷积层的偏移参数。
param_groups = []
base_lr = cfg.learningRate['base_lr']
base_wd = cfg.optimizerBuilder['regularizer']['factor']
model.add_param_group(param_groups, base_lr, base_wd)
optim_args = cfg.optimizerBuilder['optimizer'].copy()
optim_type = optim_args['type'] # 使用哪种优化器。Momentum、Adam、SGD、...之类的。
Optimizer = select_optimizer(optim_type)
del optim_args['type']
momentum = optim_args['momentum']
optimizer = Optimizer(param_groups, lr=base_lr, momentum=momentum, weight_decay=base_wd)
ema = None
if cfg.use_ema:
ema = ExponentialMovingAverage(model, cfg.ema_decay)
ema.register()
# 训练集
train_dataset = COCO(cfg.train_path)
train_img_ids = train_dataset.getImgIds()
train_records = data_clean(train_dataset, train_img_ids, _catid2clsid, cfg.train_pre_path)
num_train = len(train_records)
train_indexes = [i for i in range(num_train)]
# 验证集
val_dataset = COCO(cfg.val_path)
val_img_ids = val_dataset.getImgIds()
val_images = [] # 只跑有gt的图片,跟随PaddleDetection
for img_id in val_img_ids:
ins_anno_ids = val_dataset.getAnnIds(imgIds=img_id, iscrowd=False) # 读取这张图片所有标注anno的id
if len(ins_anno_ids) == 0:
continue
img_anno = val_dataset.loadImgs(img_id)[0]
val_images.append(img_anno)
batch_size = cfg.train_cfg['batch_size']
with_mixup = cfg.decodeImage['with_mixup']
with_cutmix = cfg.decodeImage['with_cutmix']
mixup_epoch = cfg.train_cfg['mixup_epoch']
cutmix_epoch = cfg.train_cfg['cutmix_epoch']
context = cfg.context
# 预处理
# sample_transforms
sample_transforms = []
for preprocess_name in cfg.sample_transforms_seq:
if preprocess_name == 'decodeImage':
preprocess = DecodeImage(**cfg.decodeImage) # 对图片解码。最开始的一步。
elif preprocess_name == 'mixupImage':
preprocess = MixupImage(**cfg.mixupImage) # mixup增强
elif preprocess_name == 'colorDistort':
preprocess = ColorDistort(**cfg.colorDistort) # 颜色扰动
elif preprocess_name == 'randomExpand':
preprocess = RandomExpand(**cfg.randomExpand) # 随机填充
elif preprocess_name == 'randomCrop':
preprocess = RandomCrop(**cfg.randomCrop) # 随机裁剪
elif preprocess_name == 'randomFlipImage':
preprocess = RandomFlipImage(**cfg.randomFlipImage) # 随机翻转
elif preprocess_name == 'normalizeBox':
preprocess = NormalizeBox(**cfg.normalizeBox) # 将物体的左上角坐标、右下角坐标中的横坐标/图片宽、纵坐标/图片高 以归一化坐标。
elif preprocess_name == 'padBox':
preprocess = PadBox(**cfg.padBox) # 如果gt_bboxes的数量少于num_max_boxes,那么填充坐标是0的bboxes以凑够num_max_boxes。
elif preprocess_name == 'bboxXYXY2XYWH':
preprocess = BboxXYXY2XYWH(**cfg.bboxXYXY2XYWH) # sample['gt_bbox']被改写为cx_cy_w_h格式。
sample_transforms.append(preprocess)
# batch_transforms
batch_transforms = []
for preprocess_name in cfg.batch_transforms_seq:
if preprocess_name == 'randomShape':
preprocess = RandomShapeSingle(random_inter=cfg.randomShape['random_inter']) # 多尺度训练。随机选一个尺度。也随机选一种插值方式。
elif preprocess_name == 'normalizeImage':
preprocess = NormalizeImage(**cfg.normalizeImage) # 图片归一化。先除以255归一化,再减均值除以标准差
elif preprocess_name == 'permute':
preprocess = Permute(**cfg.permute) # 图片从HWC格式变成CHW格式
elif preprocess_name == 'gt2YoloTarget':
preprocess = Gt2YoloTargetSingle(**cfg.gt2YoloTarget) # 填写target张量。
batch_transforms.append(preprocess)
print('\n=============== sample_transforms ===============')
for trf in sample_transforms:
print('%s' % str(type(trf)))
print('\n=============== batch_transforms ===============')
for trf in batch_transforms:
print('%s' % str(type(trf)))
# 输出几个特征图
n_layers = len(cfg.head['anchor_masks'])
# 保存模型的目录
if not os.path.exists('./weights'): os.mkdir('./weights')
time_stat = deque(maxlen=20)
start_time = time.time()
end_time = time.time()
# 一轮的步数。丢弃最后几个样本。
train_steps = num_train // batch_size
mixup_steps = mixup_epoch * train_steps
cutmix_steps = cutmix_epoch * train_steps
print('\n=============== mixup and cutmix ===============')
print('steps_per_epoch: %d' % train_steps)
if with_mixup:
print('mixup_steps: %d' % mixup_steps)
else:
print('don\'t use mixup.')
if with_cutmix:
print('cutmix_steps: %d' % cutmix_steps)
else:
print('don\'t use cutmix.')
# 读数据的线程
train_dic = {}
thr = threading.Thread(target=read_train_data,
args=(cfg,
train_indexes,
train_steps,
train_records,
batch_size,
iter_id,
train_dic,
use_gpu,
n_layers,
context, with_mixup, with_cutmix, mixup_steps, cutmix_steps, sample_transforms, batch_transforms))
thr.start()
best_ap_list = [0.0, 0] #[map, iter]
while True: # 无限个epoch
for step in range(train_steps):
iter_id += 1
key_list = list(train_dic.keys())
key_len = len(key_list)
while key_len == 0:
time.sleep(0.01)
key_list = list(train_dic.keys())
key_len = len(key_list)
dic = train_dic.pop('%.8d'%iter_id)
# 估计剩余时间
start_time = end_time
end_time = time.time()
time_stat.append(end_time - start_time)
time_cost = np.mean(time_stat)
eta_sec = (cfg.train_cfg['max_iters'] - iter_id) * time_cost
eta = str(datetime.timedelta(seconds=int(eta_sec)))
# ==================== train ====================
images = dic['images']
gt_bbox = dic['gt_bbox']
gt_score = dic['gt_score']
gt_class = dic['gt_class']
target0 = dic['target0']
target1 = dic['target1']
if n_layers > 2:
target2 = dic['target2']
targets = [target0, target1, target2]
else:
targets = [target0, target1]
losses = model(images, None, False, gt_bbox, gt_class, gt_score, targets)
all_loss = 0.0
loss_names = {}
for loss_name in losses.keys():
sub_loss = losses[loss_name]
all_loss += sub_loss
loss_names[loss_name] = sub_loss.cpu().data.numpy()
_all_loss = all_loss.cpu().data.numpy()
# 更新权重
lr = calc_lr(iter_id, cfg)
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['base_lr'] / base_lr
optimizer.zero_grad() # 清空上一步的残余更新参数值
all_loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
if cfg.use_ema:
ema.update() # 更新ema字典
# ==================== log ====================
if iter_id % 20 == 0:
speed = (1.0 / time_cost)
speed *= batch_size
speed_msg = '%.3f imgs/s.' % (speed,)
lr = optimizer.param_groups[0]['lr']
each_loss = ''
for loss_name in loss_names.keys():
loss_value = loss_names[loss_name]
each_loss += ' %s: %.3f,' % (loss_name, loss_value)
strs = 'Train iter: {}, lr: {:.9f}, all_loss: {:.3f},{} eta: {}, speed: {}'.format(iter_id, lr, _all_loss, each_loss, eta, speed_msg)
logger.info(strs)
# ==================== save ====================
if iter_id % cfg.train_cfg['save_iter'] == 0:
if cfg.use_ema:
ema.apply()
save_path = './weights/step%.8d.pt' % iter_id
torch.save(model.state_dict(), save_path)
if cfg.use_ema:
ema.restore()
path_dir = os.listdir('./weights')
steps = []
names = []
for name in path_dir:
if name[len(name) - 2:len(name)] == 'pt' and name[0:4] == 'step':
step = int(name[4:12])
steps.append(step)
names.append(name)
if len(steps) > 10:
i = steps.index(min(steps))
os.remove('./weights/'+names[i])
logger.info('Save model to {}'.format(save_path))
# ==================== eval ====================
if iter_id % cfg.train_cfg['eval_iter'] == 0:
if cfg.use_ema:
ema.apply()
model.eval() # 切换到验证模式
head.set_dropblock(is_test=True)
box_ap = eval(_decode, val_images, cfg.val_pre_path, cfg.val_path, cfg.eval_cfg['eval_batch_size'], _clsid2catid, cfg.eval_cfg['draw_image'], cfg.eval_cfg['draw_thresh'])
logger.info("box ap: %.3f" % (box_ap[0], ))
model.train() # 切换到训练模式
head.set_dropblock(is_test=False)
# 以box_ap作为标准
ap = box_ap
if ap[0] > best_ap_list[0]:
best_ap_list[0] = ap[0]
best_ap_list[1] = iter_id
torch.save(model.state_dict(), './weights/best_model.pt')
if cfg.use_ema:
ema.restore()
logger.info("Best test ap: {}, in iter: {}".format(best_ap_list[0], best_ap_list[1]))
# ==================== exit ====================
if iter_id == cfg.train_cfg['max_iters']:
logger.info('Done.')
exit(0)