-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
263 lines (214 loc) · 8.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import sys
import logging
import torch
import torchvision.transforms as transforms
from torch import autograd
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import _LRScheduler
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, logger, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.logger = logger
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
self.logger.info('\t'.join(entries))
def compose_json(self):
best_res = {}
for meter in self.meters:
best_res[meter.name] = meter.avg
return best_res
def display_avg(self):
entries = [self.prefix ]
entries += [f"{meter.name}:{meter.avg:6.3f}" for meter in self.meters]
self.logger.info('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def get_network(args, num_classes):
""" return given network
"""
if args.net == 'resnet18':
from models.resnet import ResNet, BasicBlock
return ResNet, {"block": BasicBlock, "num_blocks": [2, 2, 2, 2], 'num_classes':num_classes}
elif args.net == 'resnet32':
from models.resnet32 import ResNet, BasicBlock
return ResNet, {"block": BasicBlock, "num_blocks": [5, 5, 5], 'num_classes':num_classes}
else:
print('the network name you have entered is not supported yet')
sys.exit()
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res, correct
def get_training_dataloader(mean, std, batch_size=16, num_workers=2, shuffle=True, dataset_name = None):
""" return training dataloader
Args:
mean: mean of cifar100 training dataset
std: std of cifar100 training dataset
batch_size: dataloader batchsize
num_workers: dataloader num_works
shuffle: whether to shuffle
Returns: train_data_loader:torch dataloader object
"""
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
if dataset_name == 'cifar100':
from dataset import CIFAR100_idx as dataset_idx
elif dataset_name == 'cifar10':
from dataset import CIFAR10_idx as dataset_idx
else:
print('the dataset name you have entered is not supported yet')
sys.exit()
training_set = dataset_idx(root='./data', train=True, download=True, transform=transform_train)
_training_loader = DataLoader(
training_set, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)
return _training_loader, None
def get_test_dataloader(mean, std, batch_size=16, num_workers=2, shuffle=True, dataset_name = None):
""" return training dataloader
Args:
mean: mean of cifar100 test dataset
std: std of cifar100 test dataset
batch_size: dataloader batchsize
num_workers: dataloader num_works
shuffle: whether to shuffle
Returns: test_data_loader:torch dataloader object
"""
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
if dataset_name == 'cifar100':
from dataset import CIFAR100_idx as dataset_idx
elif dataset_name == 'cifar10':
from dataset import CIFAR10_idx as dataset_idx
else:
print('the dataset name you have entered is not supported yet')
sys.exit()
test_set = dataset_idx(root='./data', train=False, download=True, transform=transform_test)
cifar100_test_loader = DataLoader(
test_set, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)
return cifar100_test_loader
class WarmUpLR(_LRScheduler):
"""warmup_training learning rate scheduler
Args:
optimizer: optimzier(e.g. SGD)
total_iters: totoal_iters of warmup phase
"""
def __init__(self, optimizer, total_iters, last_epoch=-1):
self.total_iters = total_iters
super().__init__(optimizer, last_epoch)
def get_lr(self):
"""we will use the first m batches, and set the learning
rate to base_lr * m / total_iters
"""
return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs]
def get_logger(file_path):
""" Make python logger """
logger = logging.getLogger('USNet')
log_format = '%(asctime)s | %(message)s'
formatter = logging.Formatter(log_format, datefmt='%m/%d %I:%M:%S %p')
file_handler = logging.FileHandler(file_path)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
logger.setLevel(logging.INFO)
return logger
class ThresholdBinarizer(autograd.Function):
"""
Threshold binarizer.
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j} > \tau`
where `\tau` is a real value threshold.
Implementation is inspired from:
https://github.com/arunmallya/piggyback
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
Arun Mallya, Dillon Davis, Svetlana Lazebnik
"""
@staticmethod
def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool, min_elements: float=0.0):
"""
We limit by default the pruning so that at least 0.5% (half a percent) of the weights are remaining (min_elements)
If you set min_elements to zero, no minimal number of elements will be enforced.
Args:
inputs (`torch.FloatTensor`)
The input matrix from which the binarizer computes the binary mask.
threshold (`float`)
The threshold value (in R).
sigmoid (`bool`)
If set to ``True``, we apply the sigmoid function to the `inputs` matrix before comparing to `threshold`.
In this case, `threshold` should be a value between 0 and 1.
Returns:
mask (`torch.FloatTensor`)
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
retained, 0 - the associated weight is pruned).
"""
nb_elems = inputs.numel()
if min_elements != 0:
nb_min = int(min_elements * nb_elems) + 1
else:
nb_min = 0
if sigmoid:
mask = (torch.sigmoid(inputs) > threshold).type(inputs.type())
else:
mask = (inputs > threshold).type(inputs.type())
if mask.sum() < nb_min:
k_threshold = inputs.flatten().kthvalue(max(nb_elems - nb_min, 1)).values
mask = (inputs > k_threshold).type(inputs.type())
return mask
@staticmethod
def backward(ctx, gradOutput):
return gradOutput, None, None, None
def cost_calculation(Exit_rate_l, Flag, n_estimators):
""" Calculate the cost of inference based on exit """
cost = 0
exit_rate_all = 0
if Flag:
for i in range(len(Exit_rate_l)-1):
exit_rate_all += Exit_rate_l[i] * 0.01
cost += Exit_rate_l[i] * 0.01 * (i + 1)
cost += (1 - exit_rate_all) * n_estimators
else:
for i in range(len(Exit_rate_l)):
exit_rate_all += Exit_rate_l[i] * 0.01
cost += Exit_rate_l[i] * 0.01 * (i + 1)
cost += (1 - exit_rate_all) * n_estimators
return cost