-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
54 lines (46 loc) · 1.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
Utility fuctions
"""
import argparse
import torch
from transformers import AutoConfig, AutoModelForMaskedLM, AutoModelForCausalLM, AutoTokenizer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, required=True,
help='Path to evaluation dataset. i.e. implicitHate.json or toxiGen.json')
parser.add_argument('--output', type=str, required=True,
help='Path to result text file')
parser.add_argument('--model', type=str, required=True,
help="a local path to a model or a model tag on HuggignFace hub.")
parser.add_argument('--lmHead', type=str, required=True,
choices=['mlm', 'clm'])
parser.add_argument('--config', type=str,
help='Path to model config file')
parser.add_argument("--force", action="store_true",
help="Overwrite output path if it already exists.")
args = parser.parse_args()
return args
def load_tokenizer_and_model(args, from_tf=False):
'''
Load tokenizer and model to evaluate.
'''
pretrained_weights = args.model
if args.config:
config = AutoConfig.from_pretrained(args.config)
else:
config = None
tokenizer = AutoTokenizer.from_pretrained(pretrained_weights)
# Load Masked Language Model Head
if args.lmHead == 'mlm':
model = AutoModelForMaskedLM.from_pretrained(pretrained_weights,
from_tf=from_tf, config=config)
# load Causal Language Model Head
else:
model = AutoModelForCausalLM.from_pretrained(pretrained_weights,
from_tf=from_tf, config=config)
model = model.eval()
if torch.cuda.is_available():
model.to('cuda')
return tokenizer, model