forked from jerudolph13/SimTeach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimteach_non-diff-misclass.R
169 lines (127 loc) · 6.37 KB
/
simteach_non-diff-misclass.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#######################################################################################################
#
# Purpose: To demonstrate one way to simulate non-differential misclassification (NDM) scenarios and
# to estimate bias under those scenarios
#
# Author: Jacqueline E. Rudolph
#
# Required packages: ggplot2, tidyverse
#
# Last Updated: 15 Oct 2020
#
#######################################################################################################
##Load in necessary packages
packages <- c("tidyverse" ,"ggplot2")
for (package in packages) {
library(package, character.only=T)
}
##Set up data set to store results
results <- data.frame(
rep=NA,
delta1=NA,
delta2=NA,
delta3=NA,
delta4=NA,
delta5=NA,
stringsAsFactors = FALSE
)
# Run simulation ----------------------------------------------------------
reps <- 10000 #The number of simulations
n <- 1000 #Sample size within each simulation
#We carry out the simulations using the following function
simloop <- function(r, n) {
set.seed(r)
results$rep <- r
#Create 2 continuous confounders (M1 and M2)
#Both are log normally distributed: the corresponding normal distributions have mean 0 and s.d. 1
m1 <- rlnorm(n, meanlog=0, sdlog=1)
m2 <- rlnorm(n, meanlog=0, sdlog=1)
#Create binary exposure, P(A=1)=0.5
#A affected by M1 and M2: both with log(OR) of log(2)
a <- rbinom(n, 1, 1/(1 + exp(-(-log(1/0.5 - 1) + log(2)*m1 + log(2)*m2))))
#Continuous outcome affected by exposure and confounders
#Normally distributed with mean determined by formula below and s.d. 6
#Intercept of 10; mean difference of 2 for A, M1, and M2
y <- rnorm(n, mean=(10 + 2*a + 2*m1 + 2*m2), sd=6)
#Exposure with NDM
#We select 15% of the sample to have misclassified A
error <- rnorm(n) #We use "error" to determine misclassification in anticipation of dependency below
a.err <- a
a.err <- ifelse(a==1 & error > qnorm(0.85), 0, a.err) #Set sensitivity to 0.85
a.err <- ifelse(a==0 & error > qnorm(0.95), 1, a.err) #Set specificity to 0.95
#Induce NDM of M1 that is (1) independent of and (2) dependent with the error in exposure
m1.indep <- m1 + 0.9*runif(n, min=-1, max=1) #Mismeasured M1, independent of error in A
m1.dep <- m1 + 0.9*error #Mismeasured M1, dependent with error in A (because both depend on "error")
#Scenario 1: Linear model under no misclassification
results$delta1 <- summary(glm(y ~ a + m1 + m2, family=gaussian(link="identity")))$coefficients[2]
#Scenario 2: Linear model under NDM of binary exposure only
results$delta2 <- summary(glm(y ~ a.err + m1 + m2, family=gaussian(link="identity")))$coefficients[2]
#Scenario 3: Linear model under NDM of continuous confounder only
results$delta3 <- summary(glm(y ~ a + m1.dep + m2, family=gaussian(link="identity")))$coefficients[2]
#Scenario 4: Linear model under NDM of exposue and confounder, with independent errors
results$delta4 <- summary(glm(y ~ a.err + m1.indep + m2, family=gaussian(link="identity")))$coefficients[2]
#Scenario 5: Linear model under NDM of exposure and confounder, with dependent errors
results$delta5 <- summary(glm(y ~ a.err + m1.dep + m2, family=gaussian(link="identity")))$coefficients[2]
return(results)
}
##Run the above function "reps" times, where reps is the number of simulations
all.res <- lapply(1:reps, function(x) {simloop(x, n)})
all.res <- do.call(rbind, all.res)
# Summarize ---------------------------------------------------------------
#Proportion of simulations that had an error in the mean difference greater than the null
pos.error2 <- sum((all.res$delta2 - 2) > 0)/reps #Comparing scenario 2 to scenario 1
pos.error3 <- sum((all.res$delta3 - 2) > 0)/reps #Comparing scenario 3 to scenario 1
pos.error4 <- sum((all.res$delta4 - 2) > 0)/reps #Comparing scenario 4 to scenario 1
pos.error5 <- sum((all.res$delta5 - 2) > 0)/reps #Comparing scenario 5 to scenario 1
#Get the average mean difference across simulations for each scenario
summ.res <- all.res %>%
summarise(avg.delta1=mean(delta1),
avg.delta2=mean(delta2),
avg.delta3=mean(delta3),
avg.delta4=mean(delta4),
avg.delta5=mean(delta5)) %>%
#Compute bias by comparing the average mean differences to the true mean difference of 2
mutate(bias2=avg.delta2 - 2,
bias3=avg.delta3 - 2,
bias4=avg.delta4 - 2,
bias5=avg.delta5 - 2)
# Visualize ---------------------------------------------------------------
#Set formatting options
thm <- theme_classic() +
theme(
#Format text
axis.title = element_text(family="Helvetica", size=16, color="black"),
legend.text = element_text(family="Helvetica", size=16, color="black", margin=margin(t=0.25,b=0.25, unit="lines")),
legend.title = element_text(family="Helvetica", size=16, color="black"),
axis.text = element_text(family="Helvetica", size=16, color="black"),
#Format axes
axis.line = element_line(size=0.75),
axis.ticks = element_line(size=0.75),
#Format legend
legend.title.align = 0.5,
legend.position = c(0.85, 0.8),
legend.background = element_rect(fill = "transparent", colour = NA),
legend.key = element_rect(fill = "transparent", colour = NA),
legend.direction="vertical",
legend.box.background = element_rect(colour = "black", size=0.75),
#Add space around plot
plot.margin = unit(c(2, 2, 2, 2), "lines")
)
#Compare results of Scenarios 1, 2, and 5
#Define custom legend labels
cols<-c("None"="solid", "Exposure"="dashed", "Exposure & \nConfounder"="dotted")
pdf("./missclass_fig.pdf", height=6, width=9)
ggplot(all.res) + thm +
#Plot labels
labs(x="\n Mean Difference", y="Density \n") +
#Generate plots
stat_density(aes(delta1, linetype="None"), geom="line", size=0.75) +
stat_density(aes(delta2, linetype="Exposure"), geom="line", size=0.75) +
stat_density(aes(delta5, linetype="Exposure & \nConfounder"), geom="line", size=0.75) +
#Create custom legend
scale_linetype_manual(name="Misclassified \n Variable(s)", values=cols) +
annotate(geom="segment", x=3.55, xend=4.63, y=0.88, yend=0.88, size=0.75, color="black") +
#Define axis options
scale_x_continuous(expand=c(0, 0), limits=c(-1, 5), breaks=c(-1, 0, 1, 2, 3, 4, 5)) +
scale_y_continuous(expand=c(0,0), limits=c(0,1))
dev.off()