-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestTitle.txt
64 lines (64 loc) · 11.3 KB
/
TestTitle.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Hunt, J.M., Hays, E.E., Degens, E.T. & Ross, D.A. Red Sea: detailed survey of hot-brine areas. Science. 156, 514-516 (1967).
Hovland, M., et al. Sub-surface precipitation of salts in supercritical seawater. Basin Res 18: 221–230 (2006) .
Augustin, N., Devey, C. W. & van der Zwan F. M. A modern view on the Red Sea rift: tectonics, volcanism and salt blankets, in: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer International Publishing, Cham, 37-52 (2019).
Bosworth, W., Huchon, P. & McClay, K. The red sea and gulf of aden basins. J Afr Earth Sci. 43, 334-378 (2005).
Bosworth, W., Stockli, D.F. & Helgeson, D.E. Integrated outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the western desert, Egypt—the role of the 23 Ma Cairo “mini-plume”. J Afr Earth Sci 109, 107–119 (2015).
Bonatti E., Cipriani A., Lupi L. The Red Sea: birth of an ocean. In: The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 29–44 (2015)
Warren, J.K. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci Rev. 98, 217-268 (2010).
Colombo D., et al. Exploration beyond seismic: the role of electromagnetics and gravity gradiometry in deep water subsalt plays of the Red Sea. Interpret. 2, SH33–SH53 (2014).
Augustin, N., et al. The rifting to spreading transition in the Red Sea. Earth Planet. Sc Lett. 395, 217-230 (2014).
Millero, F.J. Thermodynamic and Kinetic Properties of Natural Brines. Aquat. Geochem. 15, 7-41 (2009).
Swallow J.C., Crease J. Hot salty water at the bottom of the Red Sea. Nature 205, 165–166 (1965).
Bruneau, L., Jerlov, N.G., and Koczy, F.F. Physical and chemical methods. In Reports of the Swedish deep-sea expedition, vol. III. Physics and chemistry, no. 4, pp. 99–112 (1953).
Pierret M.C., Clauer N., Bosch D., Blanc G., France-Lanord C. Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochimica Acta 65, 1259–1275 (2001).
Hartmann M., Scholten J,C,, Stoffers P,, Wehner F, Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery deep. Mar Geol 144, 311–330 (1998)
Anschutz, P.G., Blanc, Chatin F., Geiller M., Pierret M.-C. Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep-Sea Res. I, 46, 1779-1792 (1999).
Antunes, A., Ngugi, D.K. and Stingl, U.,. Microbiology of the Red Sea (and other) deep‐sea anoxic brine lakes. Environ. Microbiol. Rep., 3, 416-433 (2011).
Schardt, C. Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Mineralium Deposita, 51, 89-111 (2016).
Ramboz C., Danis M. Superheating in the Red Sea? The heat-mass balance of the Atlantis II Deep revisited. Earth Planet Sci Lett 97, 190–210 (1990).
Backer H., Schoell M. New deeps with brines and metalliferous sediments in the Red Sea. Nat Phys Sci 240, 153–158 (1972).
Batang Z.B. et al. First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94, 247–253 (2012).
Merlino G., Barozzi A., Michoud G,. Ngugi D.K., Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol 94, 1–15 (2018).
Hackett, J. P. Jr., and Bischoff, J. L. New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ. Geol., 68, 553–564 (1973).
Louca S, Parfrey LW, Doebeli M Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
Louca S et al. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ Microbiol 19, 3132–3151 (2017).
Claypool, G.E., Threlkeld, C.N., Mankiewicz, P.N., Arthur, M.A. and Anderson, T.F. Isotopic composition of interstitial fluids and origin of methane in slope sediment of the middle america trench, deep-sea drilling project LEG-84. Initial Reports of the Deep Sea Drilling Project 84, 683-691 (1985).
Diaz-del-Rio, V., Somoza, L., Martinez-Frias, J., Mata, M., Delgado, A., Hernandez-Molina, F., Lunar, R., Martin-Rubi, J., Maestro, A., Fernandez-Puga, M., Leon, R., Llave, E., Medialdea, T. and Vazquez, J. (2003) Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cadiz. Marine Geology 195, 177-200.
Schoell, M. (1988) Multiple origins of methane in the Earth. Chemical Geology 71, 1-10.
Vandré, C., Cramer, B., Gerling, P. and Winsemann, J. (2007) Natural gas formation in the western Nile delta (Eastern Mediterranean): Thermogenic versus microbial. Organic Geochemistry 38, 523-539.
Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence. Geochimica et Cosmochimica Acta 50, 693-709.
Angert, A., Barkan, E., Barnett, B., Brugnoli, E., Davidson, E.A., Fessenden, J., Maneepong, S., Panapitukkul, N., Randerson, J.T., Savage, K., Yakir, D. and Luz, B. (2003a) Contribution of soil respiration in tropical, temperate, and boreal forests to the O-18 enrichment of atmospheric O-2. Global Biogeochemical Cycles 17.
Angert, A., Rachmilevitch, S., Barkan, E. and Luz, B. (2003b) Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O-2. Global Biogeochemical Cycles 17.
Helman, Y., Barkan, E., Eisenstadt, D., Luz, B. and Kaplan, A. (2005) Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiology 138, 2292-2298.
Miyake, Y. and Wada, E. (1967) The Abundance ratio of 15N/14N in Marine Environments. Records of Oceanographic Works 9, 18.
Naqvi, S.W.A., Yoshinari, T., Brandes, J.A., Devol, A.H., Jayakumar, D.A., Narvekar, P.V., Altabet, M.A. and Codispoti, L.A. (1998) Nitrogen isotopic studies in the suboxic Arabian Sea. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences 107, 367-378.
Bougouffa, S., Yang, J.K., Lee, O.O., Wang, Y., Batang, Z., Al-Suwailem, A. and Qian, P.Y. (2013) Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns. Applied and Environmental Microbiology 79, 3425.
Snyder, G., Poreda, R., Fehn, U. and Hunt, A. (2003) Sources of nitrogen and methane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components. Geochemistry, Geophysics, Geosystems 4, 1-28.
Sheppard, S.M. (1986) Characterization and isotopic variations in natural waters. Reviews in Mineralogy and Geochemistry 16, 165-183.
Kotopoulou, E., Delgado Huertas, A., Garcia-Ruiz, J.M., Dominguez-Vera, J.M., Lopez-Garcia, J.M., Guerra-Tschuschke, I. and Rull, F. (2019) A Polyextreme Hydrothermal System Controlled by Iron: The Case of Dallol at the Afar Triangle. ACS Earth and Space Chemistry 3, 90-99.
Oerter, E.J., Singleton, M. and Davisson, M.L. (2018) Hydrogen and oxygen stable isotope dynamics of hyper-saline and salt-saturated aqueous solutions. Geochimica et Cosmochimica Acta 238, 316-328.
Varekamp, J.C. and Kreulen, R. (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. Journal of Volcanology and Geothermal Research 97, 309-327.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J.J. and Grierson, P.F. (2015) Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology 523, 781-789.
Gázquez, F., Evans, N.P. and Hodell, D.A. (2017) Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum). Geochimica et Cosmochimica Acta 198, 259-270.
Eslinger, E.V. and Yeh, H.W. (1981) Mineralogy, o-18-o-16, and d-h ratios of clay-rich sediments from deep-sea drilling project site 180, aleutian trench. Clays and Clay Minerals 29, 309-315.
Kharaka, Y.K. and Thordsen, J.J. (1992) Stable isotope geochemistry and origin of waters in sedimentary basins, in: Clauer, N., Chaudhuri, S. (Eds.), Isotopic Signatures and Sedimentary Records. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 411-466.
Sheppard, S.M.F. and Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals 31, 1-24.
Yeh, H.W. and Epstein, S. (1978) HYDROGEN ISOTOPE EXCHANGE BETWEEN CLAY-MINERALS AND SEA-WATER. Geochimica Et Cosmochimica Acta 42, 140-143.
Capuano, R.M. (1992) The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system. Geochimica et Cosmochimica Acta 56, 2547-2554.
Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Appl Environ Microbiol 71:4117–4120.
Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett 282:182–187.
Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW (2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2:11.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1.
Flores G. et al. Microbial Community structure of hydrothermal deposits from geochemically different vent fields along the Mid Atlantic Ridge. Environ Microbiol. 13, 2158-2171 (2011).
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.
Caporaso, J.G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336 (2010).
Fodelianakis, S. et al. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments. Mol Ecol 26, 2006–2018 (2017).
DeSantis, TZ et al. A chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 72, 5069–5072 (2006).
Sharp, Z.D., Atudorei , V., Durakiewicz, T. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol. 178, 197–210 (2001).
Sharp, Z.D., Atudorei, V. & Durakiewicz, T. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178, 197–210 (2001).
Cohn, M. and Urey H.C. Oxygen exchange reactions of organic compounds and water. J. Amer. Chem. Soc. 60:679-687 (1938).
Epstein, S. and Mayeda, T.K. Variation of the 18O/16O ratio in natural waters. Geochim. Cosmochim. Acta. 4: 213-224 (1953).
Salata, G. G., Roelke, L.A., Cifuentes L.A. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Marine Chemistry 69, 153–161 (2000).
McMurdie P.J., Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8 e61217 (2013).
Oksanen J. et al. vegan: Community Ecology Package. (2017)
Parks D.H., Tyson G.W., Hugenholtz P., Beiko R.G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124 (2014).