-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathkeyExpansion.v
384 lines (370 loc) · 9.83 KB
/
keyExpansion.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
module keyExpansion #(parameter nk=4,parameter nr=10)(key,w);
// The first [(nk*32)-1 ]-bit key that we use to generate the rest of the keys of the other rounds.
// [(nk*32)-1 ] is the key length (128-bit key, 192-bit key or 256-bit key for nK=4,6 or 8 respectively).
input [0 : (nk * 32) - 1] key;
// w represents the array that will store all the generated keys of all rounds.
/* [(128 * (nr + 1)) - 1] this formula is meant to calculate the length of W ; so that it can store all the
generated keys of all rounds.*/
output reg [0 : (128 * (nr + 1)) - 1] w;
reg [0:31] temp;
reg [0:31] r;
reg [0:31] rot; // It stores the returned value from the function rotword().
reg [0:31] x; //It stores the returned value from the function subwordx().
reg [0:31] rconv; //It stores the returned value from the function rconx().
reg [0:31]new;
integer i;
/*
We generate all the keys needed in the encryption and decryption at the beginning of the encryption or decryption
and store them, then we use them in the AES_Encrypt and AES_Decrypt modules as needed according to the current
round.
*/
/*
The functions:
1) subwordx() applies a table lookup to all to all four bytes of the sent word. subwordx() calls the function
c() four times, each time it sends to c() 1-byte to perform the table lookup on it.
2) rconx() contains the values given by [x^(i-1),{00},{00},{00}], with x^(i-1) being powers
of x (x is denoted as {02}) in the field GF(28).
3) rotword() applies a cyclic shift of the bytes in a word. For example,{09cf4f3c} is changed into {cf4f3c09}
after applying this function.
*/
/*
The pseudo-code of the this algorithm is found in the NIST.pdf attached to the repository with some modification
in the code to fit with verilog.
*/
/*
For simplicity, We are going to explain the storing mechanism of the generated keys on an example of
128-bit key.It would be easy to apply the same concept on 192-bit and 256-bit keys. We would explain it in one
round only. The next rounds would perform the same operations.
-The example:
-Note that in case of 128-bit key w[0:1407].
1) when w=key then w= {1279*{0}:key} where 1279*{0} means that the first 1279 bits are all zero valued
and the end of the w array contains the current 128-bit key.
2) when temp = w[(128 * (nr + 1) - 32) +: 32] then temp=w[1376 +:32] so temp in the first round would contain
the last 32-bit word of the the current key.
3) After performing (temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]) or (temp = SubWord(temp)), We would perform
(new = w[(128*(nr+1)-(nk*32))+:32] ^ temp) which is (new=w[1280+:32] ^ temp) in the first round,
where w[(128*(nr+1)-(nk*32))+:32] here is equivelent to w[i-Nk] in the pseudo-code. Now we have the new
generated key word (new) and we need to add it at the end of (W) array.
4) We would shift W by 32-bit to the left to empty space to the new generated key word.
5) w = {w[0 : (128 * (nr + 1) - 32) - 1], new} is w={w[0:1375],new} where w now contains w={1247*{0}:key:new}
where 1247*{0} means that the first 1247 bits are all zero valued and they are followed by the original
128-bit key, which are followed by the new generated 32-bit key.
6) Repeat this process for the rest of the rounds.At the end of all the rounds we would have all the W array
filled with all the keys.
*/
always@* begin
//The first [(nk*32)-1 ]-bit key is stored in W.
w = key;
for(i = nk; i < 4*(nr + 1); i = i + 1) begin
temp = w[(128 * (nr + 1) - 32) +: 32];
if(i % nk == 0) begin
rot = rotword(temp); // A call to the function rotword() is done and the returned value is stored in rot.
x = subwordx (rot); //A call to the function subwordx() is done and the returned value is stored in x.
rconv = rconx (i/nk); //A call to the function rconx() is done and the returned value is stored in rconv.
temp = x ^ rconv;
end
else if(nk >6 && i % nk == 4) begin
temp = subwordx(temp);
end
new = (w[(128*(nr+1)-(nk*32))+:32] ^ temp);
// We would shift W by 32 bit to the left to add the new generated key word (new) at its end.
w = w << 32;
w = {w[0 : (128 * (nr + 1) - 32) - 1], new};
end
end
function [0:31] rotword;
input [0:31] x;
begin
rotword={x[8:31],x[0:7]};
end
endfunction
function [0:31] subwordx;
input [0:31] a;
begin
subwordx[0:7]=c(a[0:7]);
subwordx[8:15]=c(a[8:15]);
subwordx[16:23]=c(a[16:23]);
subwordx[24:31]=c(a[24:31]);
end
endfunction
function [7:0] c(input [7:0] a);
begin
case (a)
8'h00: c=8'h63;
8'h01: c=8'h7c;
8'h02: c=8'h77;
8'h03: c=8'h7b;
8'h04: c=8'hf2;
8'h05: c=8'h6b;
8'h06: c=8'h6f;
8'h07: c=8'hc5;
8'h08: c=8'h30;
8'h09: c=8'h01;
8'h0a: c=8'h67;
8'h0b: c=8'h2b;
8'h0c: c=8'hfe;
8'h0d: c=8'hd7;
8'h0e: c=8'hab;
8'h0f: c=8'h76;
8'h10: c=8'hca;
8'h11: c=8'h82;
8'h12: c=8'hc9;
8'h13: c=8'h7d;
8'h14: c=8'hfa;
8'h15: c=8'h59;
8'h16: c=8'h47;
8'h17: c=8'hf0;
8'h18: c=8'had;
8'h19: c=8'hd4;
8'h1a: c=8'ha2;
8'h1b: c=8'haf;
8'h1c: c=8'h9c;
8'h1d: c=8'ha4;
8'h1e: c=8'h72;
8'h1f: c=8'hc0;
8'h20: c=8'hb7;
8'h21: c=8'hfd;
8'h22: c=8'h93;
8'h23: c=8'h26;
8'h24: c=8'h36;
8'h25: c=8'h3f;
8'h26: c=8'hf7;
8'h27: c=8'hcc;
8'h28: c=8'h34;
8'h29: c=8'ha5;
8'h2a: c=8'he5;
8'h2b: c=8'hf1;
8'h2c: c=8'h71;
8'h2d: c=8'hd8;
8'h2e: c=8'h31;
8'h2f: c=8'h15;
8'h30: c=8'h04;
8'h31: c=8'hc7;
8'h32: c=8'h23;
8'h33: c=8'hc3;
8'h34: c=8'h18;
8'h35: c=8'h96;
8'h36: c=8'h05;
8'h37: c=8'h9a;
8'h38: c=8'h07;
8'h39: c=8'h12;
8'h3a: c=8'h80;
8'h3b: c=8'he2;
8'h3c: c=8'heb;
8'h3d: c=8'h27;
8'h3e: c=8'hb2;
8'h3f: c=8'h75;
8'h40: c=8'h09;
8'h41: c=8'h83;
8'h42: c=8'h2c;
8'h43: c=8'h1a;
8'h44: c=8'h1b;
8'h45: c=8'h6e;
8'h46: c=8'h5a;
8'h47: c=8'ha0;
8'h48: c=8'h52;
8'h49: c=8'h3b;
8'h4a: c=8'hd6;
8'h4b: c=8'hb3;
8'h4c: c=8'h29;
8'h4d: c=8'he3;
8'h4e: c=8'h2f;
8'h4f: c=8'h84;
8'h50: c=8'h53;
8'h51: c=8'hd1;
8'h52: c=8'h00;
8'h53: c=8'hed;
8'h54: c=8'h20;
8'h55: c=8'hfc;
8'h56: c=8'hb1;
8'h57: c=8'h5b;
8'h58: c=8'h6a;
8'h59: c=8'hcb;
8'h5a: c=8'hbe;
8'h5b: c=8'h39;
8'h5c: c=8'h4a;
8'h5d: c=8'h4c;
8'h5e: c=8'h58;
8'h5f: c=8'hcf;
8'h60: c=8'hd0;
8'h61: c=8'hef;
8'h62: c=8'haa;
8'h63: c=8'hfb;
8'h64: c=8'h43;
8'h65: c=8'h4d;
8'h66: c=8'h33;
8'h67: c=8'h85;
8'h68: c=8'h45;
8'h69: c=8'hf9;
8'h6a: c=8'h02;
8'h6b: c=8'h7f;
8'h6c: c=8'h50;
8'h6d: c=8'h3c;
8'h6e: c=8'h9f;
8'h6f: c=8'ha8;
8'h70: c=8'h51;
8'h71: c=8'ha3;
8'h72: c=8'h40;
8'h73: c=8'h8f;
8'h74: c=8'h92;
8'h75: c=8'h9d;
8'h76: c=8'h38;
8'h77: c=8'hf5;
8'h78: c=8'hbc;
8'h79: c=8'hb6;
8'h7a: c=8'hda;
8'h7b: c=8'h21;
8'h7c: c=8'h10;
8'h7d: c=8'hff;
8'h7e: c=8'hf3;
8'h7f: c=8'hd2;
8'h80: c=8'hcd;
8'h81: c=8'h0c;
8'h82: c=8'h13;
8'h83: c=8'hec;
8'h84: c=8'h5f;
8'h85: c=8'h97;
8'h86: c=8'h44;
8'h87: c=8'h17;
8'h88: c=8'hc4;
8'h89: c=8'ha7;
8'h8a: c=8'h7e;
8'h8b: c=8'h3d;
8'h8c: c=8'h64;
8'h8d: c=8'h5d;
8'h8e: c=8'h19;
8'h8f: c=8'h73;
8'h90: c=8'h60;
8'h91: c=8'h81;
8'h92: c=8'h4f;
8'h93: c=8'hdc;
8'h94: c=8'h22;
8'h95: c=8'h2a;
8'h96: c=8'h90;
8'h97: c=8'h88;
8'h98: c=8'h46;
8'h99: c=8'hee;
8'h9a: c=8'hb8;
8'h9b: c=8'h14;
8'h9c: c=8'hde;
8'h9d: c=8'h5e;
8'h9e: c=8'h0b;
8'h9f: c=8'hdb;
8'ha0: c=8'he0;
8'ha1: c=8'h32;
8'ha2: c=8'h3a;
8'ha3: c=8'h0a;
8'ha4: c=8'h49;
8'ha5: c=8'h06;
8'ha6: c=8'h24;
8'ha7: c=8'h5c;
8'ha8: c=8'hc2;
8'ha9: c=8'hd3;
8'haa: c=8'hac;
8'hab: c=8'h62;
8'hac: c=8'h91;
8'had: c=8'h95;
8'hae: c=8'he4;
8'haf: c=8'h79;
8'hb0: c=8'he7;
8'hb1: c=8'hc8;
8'hb2: c=8'h37;
8'hb3: c=8'h6d;
8'hb4: c=8'h8d;
8'hb5: c=8'hd5;
8'hb6: c=8'h4e;
8'hb7: c=8'ha9;
8'hb8: c=8'h6c;
8'hb9: c=8'h56;
8'hba: c=8'hf4;
8'hbb: c=8'hea;
8'hbc: c=8'h65;
8'hbd: c=8'h7a;
8'hbe: c=8'hae;
8'hbf: c=8'h08;
8'hc0: c=8'hba;
8'hc1: c=8'h78;
8'hc2: c=8'h25;
8'hc3: c=8'h2e;
8'hc4: c=8'h1c;
8'hc5: c=8'ha6;
8'hc6: c=8'hb4;
8'hc7: c=8'hc6;
8'hc8: c=8'he8;
8'hc9: c=8'hdd;
8'hca: c=8'h74;
8'hcb: c=8'h1f;
8'hcc: c=8'h4b;
8'hcd: c=8'hbd;
8'hce: c=8'h8b;
8'hcf: c=8'h8a;
8'hd0: c=8'h70;
8'hd1: c=8'h3e;
8'hd2: c=8'hb5;
8'hd3: c=8'h66;
8'hd4: c=8'h48;
8'hd5: c=8'h03;
8'hd6: c=8'hf6;
8'hd7: c=8'h0e;
8'hd8: c=8'h61;
8'hd9: c=8'h35;
8'hda: c=8'h57;
8'hdb: c=8'hb9;
8'hdc: c=8'h86;
8'hdd: c=8'hc1;
8'hde: c=8'h1d;
8'hdf: c=8'h9e;
8'he0: c=8'he1;
8'he1: c=8'hf8;
8'he2: c=8'h98;
8'he3: c=8'h11;
8'he4: c=8'h69;
8'he5: c=8'hd9;
8'he6: c=8'h8e;
8'he7: c=8'h94;
8'he8: c=8'h9b;
8'he9: c=8'h1e;
8'hea: c=8'h87;
8'heb: c=8'he9;
8'hec: c=8'hce;
8'hed: c=8'h55;
8'hee: c=8'h28;
8'hef: c=8'hdf;
8'hf0: c=8'h8c;
8'hf1: c=8'ha1;
8'hf2: c=8'h89;
8'hf3: c=8'h0d;
8'hf4: c=8'hbf;
8'hf5: c=8'he6;
8'hf6: c=8'h42;
8'hf7: c=8'h68;
8'hf8: c=8'h41;
8'hf9: c=8'h99;
8'hfa: c=8'h2d;
8'hfb: c=8'h0f;
8'hfc: c=8'hb0;
8'hfd: c=8'h54;
8'hfe: c=8'hbb;
8'hff: c=8'h16;
endcase
end
endfunction
function[0:31] rconx;
input [0:31] r;
begin
case(r)
4'h1: rconx=32'h01000000;
4'h2: rconx=32'h02000000;
4'h3: rconx=32'h04000000;
4'h4: rconx=32'h08000000;
4'h5: rconx=32'h10000000;
4'h6: rconx=32'h20000000;
4'h7: rconx=32'h40000000;
4'h8: rconx=32'h80000000;
4'h9: rconx=32'h1b000000;
4'ha: rconx=32'h36000000;
default: rconx=32'h00000000;
endcase
end
endfunction
endmodule