forked from hemingkx/ChineseNMT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
385 lines (315 loc) · 15.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import config
from data_loader import subsequent_mask
import math
import copy
from torch.autograd import Variable
import torch
import torch.nn as nn
import torch.nn.functional as F
DEVICE = config.device
class LabelSmoothing(nn.Module):
"""Implement label smoothing."""
def __init__(self, size, padding_idx, smoothing=0.0):
super(LabelSmoothing, self).__init__()
self.criterion = nn.KLDivLoss(size_average=False)
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
return self.criterion(x, Variable(true_dist, requires_grad=False))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
# Embedding层
self.lut = nn.Embedding(vocab, d_model)
# Embedding维数
self.d_model = d_model
def forward(self, x):
# 返回x对应的embedding矩阵(需要乘以math.sqrt(d_model))
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 初始化一个size为 max_len(设定的最大长度)×embedding维度 的全零矩阵
# 来存放所有小于这个长度位置对应的positional embedding
pe = torch.zeros(max_len, d_model, device=DEVICE)
# 生成一个位置下标的tensor矩阵(每一行都是一个位置下标)
"""
形式如:
tensor([[0.],
[1.],
[2.],
[3.],
[4.],
...])
"""
position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1)
# 这里幂运算太多,我们使用exp和log来转换实现公式中pos下面要除以的分母(由于是分母,要注意带负号)
div_term = torch.exp(torch.arange(0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model))
# 根据公式,计算各个位置在各embedding维度上的位置纹理值,存放到pe矩阵中
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
# 加1个维度,使得pe维度变为:1×max_len×embedding维度
# (方便后续与一个batch的句子所有词的embedding批量相加)
pe = pe.unsqueeze(0)
# 将pe矩阵以持久的buffer状态存下(不会作为要训练的参数)
self.register_buffer('pe', pe)
def forward(self, x):
# 将一个batch的句子所有词的embedding与已构建好的positional embeding相加
# (这里按照该批次数据的最大句子长度来取对应需要的那些positional embedding值)
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
def attention(query, key, value, mask=None, dropout=None):
# 将query矩阵的最后一个维度值作为d_k
d_k = query.size(-1)
# 将key的最后两个维度互换(转置),才能与query矩阵相乘,乘完了还要除以d_k开根号
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
# 如果存在要进行mask的内容,则将那些为0的部分替换成一个很大的负数
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
# 将mask后的attention矩阵按照最后一个维度进行softmax
p_attn = F.softmax(scores, dim=-1)
# 如果dropout参数设置为非空,则进行dropout操作
if dropout is not None:
p_attn = dropout(p_attn)
# 最后返回注意力矩阵跟value的乘积,以及注意力矩阵
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
# 保证可以整除
assert d_model % h == 0
# 得到一个head的attention表示维度
self.d_k = d_model // h
# head数量
self.h = h
# 定义4个全连接函数,供后续作为WQ,WK,WV矩阵和最后h个多头注意力矩阵concat之后进行变换的矩阵
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
# query的第一个维度值为batch size
nbatches = query.size(0)
# 将embedding层乘以WQ,WK,WV矩阵(均为全连接)
# 并将结果拆成h块,然后将第二个和第三个维度值互换(具体过程见上述解析)
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 调用上述定义的attention函数计算得到h个注意力矩阵跟value的乘积,以及注意力矩阵
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
# 将h个多头注意力矩阵concat起来(注意要先把h变回到第三维的位置)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
# 使用self.linears中构造的最后一个全连接函数来存放变换后的矩阵进行返回
return self.linears[-1](x)
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
# 初始化α为全1, 而β为全0
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
# 平滑项
self.eps = eps
def forward(self, x):
# 按最后一个维度计算均值和方差
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
# 返回Layer Norm的结果
return self.a_2 * (x - mean) / torch.sqrt(std ** 2 + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
SublayerConnection的作用就是把Multi-Head Attention和Feed Forward层连在一起
只不过每一层输出之后都要先做Layer Norm再残差连接
sublayer是lambda函数
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
# 返回Layer Norm和残差连接后结果
return x + self.dropout(sublayer(self.norm(x)))
def clones(module, N):
"""克隆模型块,克隆的模型块参数不共享"""
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Encoder(nn.Module):
# layer = EncoderLayer
# N = 6
def __init__(self, layer, N):
super(Encoder, self).__init__()
# 复制N个encoder layer
self.layers = clones(layer, N)
# Layer Norm
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"""
使用循环连续eecode N次(这里为6次)
这里的Eecoderlayer会接收一个对于输入的attention mask处理
"""
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
# SublayerConnection的作用就是把multi和ffn连在一起
# 只不过每一层输出之后都要先做Layer Norm再残差连接
self.sublayer = clones(SublayerConnection(size, dropout), 2)
# d_model
self.size = size
def forward(self, x, mask):
# 将embedding层进行Multi head Attention
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
# 注意到attn得到的结果x直接作为了下一层的输入
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
def __init__(self, layer, N):
super(Decoder, self).__init__()
# 复制N个encoder layer
self.layers = clones(layer, N)
# Layer Norm
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
"""
使用循环连续decode N次(这里为6次)
这里的Decoderlayer会接收一个对于输入的attention mask处理
和一个对输出的attention mask + subsequent mask处理
"""
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
# Self-Attention
self.self_attn = self_attn
# 与Encoder传入的Context进行Attention
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
# 用m来存放encoder的最终hidden表示结果
m = memory
# Self-Attention:注意self-attention的q,k和v均为decoder hidden
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
# Context-Attention:注意context-attention的q为decoder hidden,而k和v为encoder hidden
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(Transformer, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
def forward(self, src, tgt, src_mask, tgt_mask):
# encoder的结果作为decoder的memory参数传入,进行decode
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)
class Generator(nn.Module):
# vocab: tgt_vocab
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
# decode后的结果,先进入一个全连接层变为词典大小的向量
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
# 然后再进行log_softmax操作(在softmax结果上再做多一次log运算)
return F.log_softmax(self.proj(x), dim=-1)
def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
c = copy.deepcopy
# 实例化Attention对象
attn = MultiHeadedAttention(h, d_model).to(DEVICE)
# 实例化FeedForward对象
ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
# 实例化PositionalEncoding对象
position = PositionalEncoding(d_model, dropout).to(DEVICE)
# 实例化Transformer模型对象
model = Transformer(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), c(position)),
Generator(d_model, tgt_vocab)).to(DEVICE)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
# 这里初始化采用的是nn.init.xavier_uniform
nn.init.xavier_uniform_(p)
return model.to(DEVICE)
def batch_greedy_decode(model, src, src_mask, max_len=64, start_symbol=2, end_symbol=3):
batch_size, src_seq_len = src.size()
results = [[] for _ in range(batch_size)]
stop_flag = [False for _ in range(batch_size)]
count = 0
memory = model.encode(src, src_mask)
tgt = torch.Tensor(batch_size, 1).fill_(start_symbol).type_as(src.data)
for s in range(max_len):
tgt_mask = subsequent_mask(tgt.size(1)).expand(batch_size, -1, -1).type_as(src.data)
out = model.decode(memory, src_mask, Variable(tgt), Variable(tgt_mask))
prob = model.generator(out[:, -1, :])
pred = torch.argmax(prob, dim=-1)
tgt = torch.cat((tgt, pred.unsqueeze(1)), dim=1)
pred = pred.cpu().numpy()
for i in range(batch_size):
# print(stop_flag[i])
if stop_flag[i] is False:
if pred[i] == end_symbol:
count += 1
stop_flag[i] = True
else:
results[i].append(pred[i].item())
if count == batch_size:
break
return results
def greedy_decode(model, src, src_mask, max_len=64, start_symbol=2, end_symbol=3):
"""传入一个训练好的模型,对指定数据进行预测"""
# 先用encoder进行encode
memory = model.encode(src, src_mask)
# 初始化预测内容为1×1的tensor,填入开始符('BOS')的id,并将type设置为输入数据类型(LongTensor)
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
# 遍历输出的长度下标
for i in range(max_len - 1):
# decode得到隐层表示
out = model.decode(memory,
src_mask,
Variable(ys),
Variable(subsequent_mask(ys.size(1)).type_as(src.data)))
# 将隐藏表示转为对词典各词的log_softmax概率分布表示
prob = model.generator(out[:, -1])
# 获取当前位置最大概率的预测词id
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
if next_word == end_symbol:
break
# 将当前位置预测的字符id与之前的预测内容拼接起来
ys = torch.cat([ys,
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
return ys