-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpointcloud_classification.py
529 lines (423 loc) · 26.8 KB
/
pointcloud_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
""" Tensorflow train helper
Author: Mohammad Wasil
Date: April 2021
Some functionalities were adopted from PointNet
"""
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath('__file__'))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'utils/pointcnn'))
sys.path.append(os.path.join(BASE_DIR, 'utils/pointnet'))
sys.path.append(os.path.join(BASE_DIR, 'utils/pointnet2'))
from argparse import Namespace
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import importlib
import argparse
import tensorflow as tf
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
from tensorflow.python.platform import tf_logging as logging
import tf_util
import visualization
import provider
import utils
import time
import threedmfv_net_cls as fv_model
import dgcnn
import pointcnn_cls
# tensor ops for pointnet, spidercnn needs to be recompiled
import spidercnn_cls_xyz as spidercnn
import pointnet_cls as pointnet
import pointnet2_cls_ssg as pointnet2_ssg
import pointfly as pf
from pointcnn_cls import Net
import modelnet_x3_l4 as setting
slim = tf.contrib.slim
class PointCloudClassification(object):
def __init__(self, model, config_file, train=True):
self.model = model
self.config = utils.get_yaml_contents(config_file)
self.is_train = train
self.exclude_blocks = ['Mixed_1', 'Mixed_2', 'Mixed_3', 'Mixed_4', 'Mixed_5','Mixed_6',
'maxpool4', 'maxpool7', 'inception_fc0','inception_fc1',
'dp0_inception_fc','dp1_inception_fc','pc_fc0', 'pc_fc1',
'dp0_pc_fc','dp1_pc_fc', 'dp_combined', 'fc1', 'dp1', 'logits', 'Logits', 'Predictions', 'Logits/biases',
'agg','agg/biases','transform_net1','dgcnn1','dgcnn2','dgcnn3','dgcnn4','fc2','fc3','dp2']
if self.model == "3DmFV":
self.m = self.config['models']['3DmFV']['n_gaussians']
self.gmm_variance = self.config['models']['3DmFV']['gmm_variance']
self.gmm = utils.get_3d_grid_gmm(subdivisions=[self.m, self.m, self.m], variance=self.gmm_variance)
self.set_config()
self.set_logdir()
self.load_train_data()
self.input_dim = 6 if self.model_config.pointcloud_color else 3
self.load_model()
def set_config(self):
self.data_config = Namespace(**self.config['data'])
self.train_config = Namespace(**self.config['train'])
self.model_config = Namespace(**self.config['models'][self.model])
def set_logdir(self):
self.train_logdir = os.path.join(self.train_config.logdir_root, '{}/{}_train'.format(self.data_config.dataset_name,self.model))
self.test_logdir = os.path.join(self.train_config.logdir_root, '{}/{}_test'.format(self.data_config.dataset_name,self.model))
self.checkpoint_file = tf.train.latest_checkpoint(self.train_logdir)
if not os.path.exists(self.train_logdir):
os.makedirs(self.train_logdir)
if not os.path.exists(self.test_logdir):
os.makedirs(self.test_logdir)
print("Initialization done.....................")
def load_train_data(self):
print("**** Loading dataset....................")
train_files = provider.get_data_files(os.path.join(self.data_config.datadir_root, self.data_config.dataset_name, 'train_files.txt'))
test_files = provider.get_data_files(os.path.join(self.data_config.datadir_root, self.data_config.dataset_name, 'test_files.txt'))
self.label_map = provider.get_label_map(os.path.join(self.data_config.datadir_root, self.data_config.dataset_name, 'label_map.yaml'))
train_file_idxs = np.arange(0, len(train_files))
np.random.shuffle(train_file_idxs)
if self.is_train == True:
pointcloud_data = []
feature_data = []
image_data = []
labels = []
for fn in range(len(train_files)):
print (train_files[train_file_idxs[fn]])
if ".h5" in train_files[train_file_idxs[fn]]:
pointcloud, image, mask_rgb, feature, label = provider.load_h5(train_files[train_file_idxs[fn]],
cloud_color=self.model_config.pointcloud_color, load_feature=False)
elif ".pgz" in train_files[train_file_idxs[fn]]:
pointcloud, label = provider.load_pickle_file_with_label(train_files[train_file_idxs[fn]],
compressed=True, cloud_color=self.model_config.pointcloud_color)
pointcloud, label, idx = provider.shuffle_data(pointcloud, np.squeeze(label))
label = np.squeeze(label)
pointcloud_data.extend(pointcloud)
labels.extend(label)
print('**** Train dataset loaded....................')
self.train_pointcloud_data = np.asarray(pointcloud_data)
self.train_labels = np.asarray(labels)
print("**** Loading test dataset....................")
test_pointcloud_data = []
test_image_data = []
test_feature_data = []
test_labels = []
for fn in range(len(test_files)):
if ".h5" in test_files[fn]:
pointcloud, image, mask_rgb, feature, label = provider.load_h5(test_files[fn], cloud_color=self.model_config.pointcloud_color,
load_feature=False)
elif ".pgz" in test_files[fn]:
pointcloud, label = provider.load_pickle_file_with_label(test_files[fn], compressed=True,
cloud_color=self.model_config.pointcloud_color)
label = np.squeeze(label)
test_pointcloud_data.extend(pointcloud)
test_labels.extend(label)
test_pointcloud_data = np.asarray(test_pointcloud_data)
test_labels = np.asarray(test_labels)
test_pointcloud_data, test_labels, idx = provider.shuffle_data(test_pointcloud_data, test_labels)
self.test_data = {}
self.test_data['pointcloud_data'] = test_pointcloud_data
self.test_data['labels'] = test_labels
def load_model(self):
with tf.Graph().as_default():
points_pl = tf.compat.v1.placeholder(tf.float32,
[self.train_config.batch_size, self.data_config.num_points, self.input_dim])
labels_pl = tf.compat.v1.placeholder(tf.int32, shape=(self.train_config.batch_size))
is_training_pl = tf.compat.v1.placeholder(tf.bool)
one_hot_labels = tf.one_hot(indices=labels_pl, depth=self.data_config.num_classes)
global_step = tf.compat.v1.train.get_or_create_global_step()
batch = tf.Variable(0)
bn_decay = tf_util.get_bn_decay(global_step, #batch
self.model_config.bn_init_decay,
self.train_config.batch_size,
self.model_config.bn_decay_decay_step,
self.model_config.bn_decay_decay_rate,
self.model_config.bn_decay_clip)
learning_rate = tf_util.get_learning_rate(global_step, #batch
self.model_config.base_learning_rate,
self.train_config.batch_size,
self.model_config.decay_step,
self.model_config.decay_rate)
print('**** Model selected -> {} ****\n'.format(self.model))
if self.model == "3DmFV":
w_pl = tf.compat.v1.placeholder(tf.float32, shape=(self.gmm.means_.shape[0]))
mu_pl = tf.compat.v1.placeholder(tf.float32, shape=(self.gmm.means_.shape[0], self.gmm.means_.shape[1]))
sigma_pl = tf.compat.v1.placeholder(tf.float32, shape=(self.gmm.means_.shape[0], self.gmm.means_.shape[1]))
logits, end_points = fv_model.get_model(points_pl, w_pl, mu_pl, sigma_pl, is_training_pl,
bn_decay=bn_decay, weigth_decay=self.model_config.weight_decay,
add_noise=self.model_config.add_gaussian_noise,
num_classes=self.data_config.num_classes)
total_loss = fv_model.get_loss(logits, labels_pl)
elif self.model == "DGCNN" or self.model == "DGCNNC":
logits, end_points = dgcnn.get_model(points_pl, self.data_config.num_classes,
is_training_pl, bn_decay=bn_decay,
color=True if self.model == "DGCNNC" else False)
total_loss = dgcnn.get_loss(logits, labels_pl, num_classes=self.data_config.num_classes)
elif self.model == "SpiderCNN":
logits, end_points = spidercnn.get_model(points_pl, is_training_pl, bn_decay=bn_decay, num_class=self.data_config.num_classes)
total_loss = spidercnn.get_loss(logits, labels_pl)
elif self.model == "PointNet":
logits, end_points = pointnet.get_model(points_pl, is_training_pl, bn_decay=bn_decay, num_class=self.data_config.num_classes)
total_loss = pointnet.get_loss(logits, labels_pl, end_points)
elif self.model == "PointNet2":
logits, end_points = pointnet2_ssg.get_model(points_pl, is_training_pl, bn_decay=bn_decay, num_class=self.data_config.num_classes)
total_loss = pointnet2_ssg.get_loss(logits, labels_pl, end_points)
elif self.model == "PointCNN":
xforms = tf.compat.v1.placeholder(tf.float32, shape=(None, 3, 3), name="xforms")
rotations = tf.compat.v1.placeholder(tf.float32, shape=(None, 3, 3), name="rotations")
jitter_range = tf.compat.v1.placeholder(tf.float32, shape=(1), name="jitter_range")
points_augmented = pf.augment(points_pl, xforms, jitter_range)
net = Net(points=points_augmented, features=None, is_training=is_training_pl, setting=setting)
if self.is_train:
variables_to_restore = slim.get_variables_to_restore(exclude=self.exclude_blocks)
else:
variables_to_restore = slim.get_variables_to_restore()
if self.model == "PointCNN":
total_loss, end_points = net.get_loss(labels_pl)
probabilities = end_points['Probabilities']
predictions = tf.argmax(probabilities, axis=-1, name='predictions')
correct = tf.equal(predictions, tf.to_int64(labels_pl))
with tf.name_scope('metrics'):
loss_mean_op, loss_mean_update_op = tf.compat.v1.metrics.mean(total_loss)
accuracy, update_op = tf.compat.v1.metrics.accuracy(end_points['labels_tile'], predictions)
t_1_per_class_acc_op, t_1_per_class_acc_update_op = tf.compat.v1.metrics.mean_per_class_accuracy(labels_pl,
predictions,
self.data_config.num_classes)
reset_metrics_op = tf.variables_initializer([var for var in tf.local_variables()
if var.name.split('/')[0] == 'metrics'])
metrics_op = tf.group(update_op, probabilities)
bn_decay = tf.compat.v1.train.exponential_decay(setting.learning_rate_base,
global_step,
setting.decay_steps,
setting.decay_rate,
staircase=True)
learning_rate = tf.maximum(bn_decay, setting.learning_rate_min)
tf.summary.scalar('learning_rate', tensor=learning_rate, collections=['train'])
reg_loss = setting.weight_decay * tf.compat.v1.losses.get_regularization_loss()
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate, epsilon=setting.epsilon)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(total_loss + reg_loss, global_step=global_step)
else:
#predictions that is not one_hot_encoded.
probabilities = end_points['Probabilities']
predictions = tf.argmax(probabilities, 1)
correct = tf.equal(predictions, tf.to_int64(labels_pl))
accuracy, update_op = tf.compat.v1.metrics.accuracy(labels_pl, predictions)
metrics_op = tf.group(update_op, probabilities)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(total_loss, global_step=global_step)
tf.compat.v1.summary.scalar('learning_rate', learning_rate)
tf.compat.v1.summary.scalar('bn_decay', bn_decay)
tf.compat.v1.summary.scalar('loss', total_loss)
tf.compat.v1.summary.scalar('accuracy', accuracy)
summary_op = tf.compat.v1.summary.merge_all()
# Add ops to save and restore all the variables.
saver = tf.compat.v1.train.Saver(variables_to_restore)
self.ops = {'labels_pl': labels_pl,
'points_pl': points_pl,
'w_pl': w_pl if self.model == "3DmFV" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
'mu_pl': mu_pl if self.model == "3DmFV" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
'sigma_pl': sigma_pl if self.model == "3DmFV" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
'is_training_pl': is_training_pl,
'loss': total_loss,
'train_op': train_op,
'summary_op': summary_op,
'metrics_op': metrics_op,
'predictions': predictions,
'probabilities':probabilities,
'step': batch,
'global_step': global_step,
'accuracy': accuracy,
'correct': correct,
'xforms': xforms if self.model == "PointCNN" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
'rotations': rotations if self.model == "PointCNN" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
'jitter_range': jitter_range if self.model == "PointCNN" else tf.compat.v1.placeholder(tf.float16, shape=(1)),
}
def restore_fn(sess):
if self.is_train:
if self.checkpoint_file is not None:
return saver.restore(sess, self.checkpoint_file)
else:
return None
else:
return saver.restore(sess, self.checkpoint_file)
if self.is_train:
self.sv = tf.train.Supervisor(logdir = self.train_logdir, summary_op = None, init_fn = restore_fn)
else:
self.sv = tf.train.Supervisor(logdir = self.test_logdir, saver = None, summary_op = None, init_fn = restore_fn)
sess_config = tf_util.get_sess_conf(self.train_config.gpu_selection, limit_gpu=self.train_config.limit_gpu)
self.sv.PrepareSession(config=sess_config)
with self.sv.managed_session() as self.sess:
if self.is_train:
self.train()
else:
self.evaluate(export=True)
def train(self):
print("**** Start training ")
is_training = True
print('**** Training with max epoch %03d' %(self.train_config.max_epoch))
for epoch in range(self.train_config.max_epoch):
pointcloud_data, labels, idx = provider.shuffle_data(self.train_pointcloud_data, self.train_labels)
file_size = pointcloud_data.shape[0]
num_batches = file_size / self.train_config.batch_size
curr_step = 0
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(int(num_batches)):
start_idx = batch_idx * self.train_config.batch_size
end_idx = (batch_idx + 1) * self.train_config.batch_size
points_batch = pointcloud_data[start_idx:end_idx, ...]
if self.data_config.augment_scale:
points_batch = provider.scale_point_cloud(points_batch, smin=0.66, smax=1.5)
if self.data_config.augment_rotation:
points_batch = provider.rotate_point_cloud(points_batch)
if self.data_config.augment_translation:
points_batch = provider.translate_point_cloud(points_batch, tval = 0.2)
if self.data_config.augment_jitter:
points_batch = provider.jitter_point_cloud(points_batch, sigma=0.01,clip=0.05)
if self.data_config.augment_outlier:
points_batch = provider.insert_outliers_to_point_cloud(points_batch, outlier_ratio=0.02)
points_batch = utils.scale_to_unit_sphere(points_batch)
label_batch = labels[start_idx:end_idx]
xforms_np, rotations_np = pf.get_xforms(self.train_config.batch_size,
rotation_range=setting.rotation_range,
scaling_range=setting.scaling_range,
order=setting.rotation_order)
feed_dict = {self.ops['points_pl']: points_batch,
self.ops['labels_pl']: label_batch,
self.ops['w_pl']: self.gmm.weights_ if self.model == "3DmFV" else [1],
self.ops['mu_pl']: self.gmm.means_ if self.model == "3DmFV" else [1],
self.ops['sigma_pl']: np.sqrt(self.gmm.covariances_ if self.model == "3DmFV" else [1]),
self.ops['is_training_pl']: is_training,
self.ops['xforms']: xforms_np if self.model == "PointCNN" else [1],
self.ops['rotations']: rotations_np if self.model == "PointCNN" else [1],
self.ops['jitter_range']: np.array([setting.jitter] if self.model == "PointCNN" else [1])
}
#Log the summaries every 100 step.
if curr_step % 10 == 0 and curr_step > 0:
summary, step, gstep, _top, _mop, loss_val, pred_val = self.sess.run([self.ops['summary_op'], self.ops['step'],
self.ops['global_step'], self.ops['train_op'], self.ops['metrics_op'],
self.ops['loss'], self.ops['predictions']], feed_dict=feed_dict)
self.sv.summary_computed(self.sess, summary)
else:
step, gstep, _top, _mop, loss_val, pred_val = self.sess.run([self.ops['step'],self.ops['global_step'],self.ops['train_op'],
self.ops['metrics_op'],self.ops['loss'],
self.ops['predictions']], feed_dict=feed_dict)
if curr_step % 100 == 0 or curr_step % 75 == 0:
print('global step {}: loss: {} '.format(gstep, loss_val))
correct = np.sum(pred_val == label_batch)
total_correct += correct
total_seen += self.train_config.batch_size
loss_sum += loss_val
curr_step += 1
#evaluate
if epoch % 2 == 0 or epoch == self.train_config.max_epoch-1:
acc, acc_avg_cls = self.evaluate()
def plot_batch_image(self, image_batch, predictions, label_batch, probs):
fig, ax = plt.subplots(nrows=8, ncols=4, figsize=(16,16))
fig.tight_layout()
row = 0
col = 0
for i in range(1,image_batch.shape[0]+1):
idx = i-1
prediction_name = self.label_map[predictions[idx]]
true_name = self.label_map[label_batch[idx]]
probability = np.max(probs[idx])
img = image_batch[idx]
text = 'Prediction: %s (%.2f) \n Ground truth: %s' %(prediction_name,probability,true_name)
ax[row,col].set_title(text)
img_plot = ax[row,col].imshow(img.astype('uint8'))
img_plot.axes.get_yaxis().set_ticks([])
img_plot.axes.get_xaxis().set_ticks([])
if i%4==0:
row += 1
col = 0
else:
col += 1
plt.tight_layout()
plt.show()
def evaluate(self, data=None, export=False):
print("Running evaluation....................")
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0] * self.data_config.num_classes
total_correct_class = [0] * self.data_config.num_classes
points_idx = range(self.data_config.num_points)
current_step = 0
pointcloud_data = self.test_data['pointcloud_data']
labels = self.test_data['labels']
true_labels = []
all_pred_labels = []
file_size = pointcloud_data.shape[0]
num_batches = file_size / self.train_config.batch_size
for batch_idx in range(int(num_batches)):
start_idx = batch_idx * self.train_config.batch_size
end_idx = (batch_idx + 1) * self.train_config.batch_size
points_batch = pointcloud_data[start_idx:end_idx, ...]
points_batch = utils.scale_to_unit_sphere(points_batch)
label_batch = labels[start_idx:end_idx]
xforms_np, rotations_np = pf.get_xforms(self.train_config.batch_size,
rotation_range=setting.rotation_range,
scaling_range=setting.scaling_range,
order=setting.rotation_order)
feed_dict = {self.ops['points_pl']: points_batch,
self.ops['labels_pl']: label_batch,
self.ops['w_pl']: self.gmm.weights_ if self.model == "3DmFV" else [1],
self.ops['mu_pl']: self.gmm.means_ if self.model == "3DmFV" else [1],
self.ops['sigma_pl']: np.sqrt(self.gmm.covariances_ if self.model == "3DmFV" else [1]),
self.ops['is_training_pl']: is_training,
self.ops['xforms']: xforms_np if self.model == "PointCNN" else [1],
self.ops['rotations']: rotations_np if self.model == "PointCNN" else [1],
self.ops['jitter_range']: np.array([setting.jitter]) if self.model == "PointCNN" else [1]
}
summary,_,loss_val, pred_val, probs, accuracy = self.sess.run([self.ops['summary_op'],self.ops['metrics_op'],self.ops['loss'],
self.ops['predictions'], self.ops['probabilities'],
self.ops['accuracy']], feed_dict=feed_dict)
self.sv.summary_computed(self.sess, summary)
correct = np.sum(pred_val == label_batch)
true_labels.extend(label_batch)
all_pred_labels.extend(pred_val)
total_correct += correct
total_seen += self.train_config.batch_size
loss_sum += (loss_val * self.train_config.batch_size)
for i in range(start_idx, end_idx):
l = labels[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i - start_idx] == l)[0] if self.model == "PointCNN" else (pred_val[i - start_idx] == l)
current_step += 1
total_correct_class
acc = total_correct / float(total_seen)
acc_per_class = np.asarray(total_correct_class) / np.asarray(total_seen_class)
acc_avg_cls = np.mean(np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
print("current eval accuracy: ", accuracy)
print("correct ", total_correct_class)
print("seen ", total_seen_class)
print("acc per class ", acc_per_class)
print('eval mean loss: %f' % (loss_sum / float(total_seen)))
print('eval accuracy: %f' % (acc))
print('eval avg class acc: %f' % (acc_avg_cls))
if export:
true_labels = np.asarray(true_labels)
all_pred_labels = np.asarray(all_pred_labels)
label_map = []
for i,label in enumerate(self.label_map.values()):
if "_" in label:
label_split = label.split("_")
label_map.append("-".join(label_split))
else:
label_map.append(label)
label_map = np.asarray(label_map)
visualization.visualize_confusion_matrix(true_labels, all_pred_labels, classes=label_map,
normalize=True, export=True,display=False,
filename=os.path.join('./log/images/','confusion_mat_{}_{}'.format(self.data_config.dataset_name,
self.model)),
n_classes=self.data_config.num_classes, acc_fontsize=10, label_fontsize=12)
visualization.visualize_histogram(total_correct_class, total_seen_class,label_map, self.model,
filepath=os.path.abspath('./log/images/histogram_{}_{}.pdf'.format(self.data_config.dataset_name,
self.model)))
return (acc, acc_avg_cls)