-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathtrain_RCF.py
executable file
·340 lines (324 loc) · 16.7 KB
/
train_RCF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/user/bin/python
# coding=utf-8
import os, sys
import numpy as np
from PIL import Image
import cv2
import shutil
import argparse
import time
import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import lr_scheduler
import torchvision
import torchvision.transforms as transforms
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from data_loader import BSDS_RCFLoader
from models import RCF
from functions import cross_entropy_loss_RCF, SGD_caffe
from torch.utils.data import DataLoader, sampler
from utils import Logger, Averagvalue, save_checkpoint, load_vgg16pretrain
from os.path import join, split, isdir, isfile, splitext, split, abspath, dirname
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--batch_size', default=1, type=int, metavar='BT',
help='batch size')
# =============== optimizer
parser.add_argument('--lr', '--learning_rate', default=1e-6, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight_decay', '--wd', default=2e-4, type=float,
metavar='W', help='default weight decay')
parser.add_argument('--stepsize', default=3, type=int,
metavar='SS', help='learning rate step size')
parser.add_argument('--gamma', '--gm', default=0.1, type=float,
help='learning rate decay parameter: Gamma')
parser.add_argument('--maxepoch', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--itersize', default=10, type=int,
metavar='IS', help='iter size')
# =============== misc
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--print_freq', '-p', default=1000, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('--gpu', default='0', type=str,
help='GPU ID')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--tmp', help='tmp folder', default='tmp/RCF')
# ================ dataset
parser.add_argument('--dataset', help='root folder of dataset', default='data/HED-BSDS_PASCAL')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
THIS_DIR = abspath(dirname(__file__))
TMP_DIR = join(THIS_DIR, args.tmp)
if not isdir(TMP_DIR):
os.makedirs(TMP_DIR)
print('***', args.lr)
def main():
args.cuda = True
# dataset
train_dataset = BSDS_RCFLoader(root=args.dataset, split="train")
test_dataset = BSDS_RCFLoader(root=args.dataset, split="test")
train_loader = DataLoader(
train_dataset, batch_size=args.batch_size,
num_workers=8, drop_last=True,shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=args.batch_size,
num_workers=8, drop_last=True,shuffle=False)
with open('data/HED-BSDS_PASCAL/test.lst', 'r') as f:
test_list = f.readlines()
test_list = [split(i.rstrip())[1] for i in test_list]
assert len(test_list) == len(test_loader), "%d vs %d" % (len(test_list), len(test_loader))
# model
model = RCF()
model.cuda()
model.apply(weights_init)
load_vgg16pretrain(model)
if args.resume:
if isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}'"
.format(args.resume))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
#tune lr
net_parameters_id = {}
net = model
for pname, p in net.named_parameters():
if pname in ['conv1_1.weight','conv1_2.weight',
'conv2_1.weight','conv2_2.weight',
'conv3_1.weight','conv3_2.weight','conv3_3.weight',
'conv4_1.weight','conv4_2.weight','conv4_3.weight']:
print(pname, 'lr:1 de:1')
if 'conv1-4.weight' not in net_parameters_id:
net_parameters_id['conv1-4.weight'] = []
net_parameters_id['conv1-4.weight'].append(p)
elif pname in ['conv1_1.bias','conv1_2.bias',
'conv2_1.bias','conv2_2.bias',
'conv3_1.bias','conv3_2.bias','conv3_3.bias',
'conv4_1.bias','conv4_2.bias','conv4_3.bias']:
print(pname, 'lr:2 de:0')
if 'conv1-4.bias' not in net_parameters_id:
net_parameters_id['conv1-4.bias'] = []
net_parameters_id['conv1-4.bias'].append(p)
elif pname in ['conv5_1.weight','conv5_2.weight','conv5_3.weight']:
print(pname, 'lr:100 de:1')
if 'conv5.weight' not in net_parameters_id:
net_parameters_id['conv5.weight'] = []
net_parameters_id['conv5.weight'].append(p)
elif pname in ['conv5_1.bias','conv5_2.bias','conv5_3.bias'] :
print(pname, 'lr:200 de:0')
if 'conv5.bias' not in net_parameters_id:
net_parameters_id['conv5.bias'] = []
net_parameters_id['conv5.bias'].append(p)
elif pname in ['conv1_1_down.weight','conv1_2_down.weight',
'conv2_1_down.weight','conv2_2_down.weight',
'conv3_1_down.weight','conv3_2_down.weight','conv3_3_down.weight',
'conv4_1_down.weight','conv4_2_down.weight','conv4_3_down.weight',
'conv5_1_down.weight','conv5_2_down.weight','conv5_3_down.weight']:
print(pname, 'lr:0.1 de:1')
if 'conv_down_1-5.weight' not in net_parameters_id:
net_parameters_id['conv_down_1-5.weight'] = []
net_parameters_id['conv_down_1-5.weight'].append(p)
elif pname in ['conv1_1_down.bias','conv1_2_down.bias',
'conv2_1_down.bias','conv2_2_down.bias',
'conv3_1_down.bias','conv3_2_down.bias','conv3_3_down.bias',
'conv4_1_down.bias','conv4_2_down.bias','conv4_3_down.bias',
'conv5_1_down.bias','conv5_2_down.bias','conv5_3_down.bias']:
print(pname, 'lr:0.2 de:0')
if 'conv_down_1-5.bias' not in net_parameters_id:
net_parameters_id['conv_down_1-5.bias'] = []
net_parameters_id['conv_down_1-5.bias'].append(p)
elif pname in ['score_dsn1.weight','score_dsn2.weight','score_dsn3.weight',
'score_dsn4.weight','score_dsn5.weight']:
print(pname, 'lr:0.01 de:1')
if 'score_dsn_1-5.weight' not in net_parameters_id:
net_parameters_id['score_dsn_1-5.weight'] = []
net_parameters_id['score_dsn_1-5.weight'].append(p)
elif pname in ['score_dsn1.bias','score_dsn2.bias','score_dsn3.bias',
'score_dsn4.bias','score_dsn5.bias']:
print(pname, 'lr:0.02 de:0')
if 'score_dsn_1-5.bias' not in net_parameters_id:
net_parameters_id['score_dsn_1-5.bias'] = []
net_parameters_id['score_dsn_1-5.bias'].append(p)
elif pname in ['score_final.weight']:
print(pname, 'lr:0.001 de:1')
if 'score_final.weight' not in net_parameters_id:
net_parameters_id['score_final.weight'] = []
net_parameters_id['score_final.weight'].append(p)
elif pname in ['score_final.bias']:
print(pname, 'lr:0.002 de:0')
if 'score_final.bias' not in net_parameters_id:
net_parameters_id['score_final.bias'] = []
net_parameters_id['score_final.bias'].append(p)
optimizer = torch.optim.SGD([
{'params': net_parameters_id['conv1-4.weight'] , 'lr': args.lr*1 , 'weight_decay': args.weight_decay},
{'params': net_parameters_id['conv1-4.bias'] , 'lr': args.lr*2 , 'weight_decay': 0.},
{'params': net_parameters_id['conv5.weight'] , 'lr': args.lr*100 , 'weight_decay': args.weight_decay},
{'params': net_parameters_id['conv5.bias'] , 'lr': args.lr*200 , 'weight_decay': 0.},
{'params': net_parameters_id['conv_down_1-5.weight'], 'lr': args.lr*0.1 , 'weight_decay': args.weight_decay},
{'params': net_parameters_id['conv_down_1-5.bias'] , 'lr': args.lr*0.2 , 'weight_decay': 0.},
{'params': net_parameters_id['score_dsn_1-5.weight'], 'lr': args.lr*0.01 , 'weight_decay': args.weight_decay},
{'params': net_parameters_id['score_dsn_1-5.bias'] , 'lr': args.lr*0.02 , 'weight_decay': 0.},
{'params': net_parameters_id['score_final.weight'] , 'lr': args.lr*0.001, 'weight_decay': args.weight_decay},
{'params': net_parameters_id['score_final.bias'] , 'lr': args.lr*0.002, 'weight_decay': 0.},
], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
# optimizer = torch.optim.Adam([
# {'params': net_parameters_id['conv1-4.weight'] , 'lr': args.lr*1 , 'weight_decay': args.weight_decay},
# {'params': net_parameters_id['conv1-4.bias'] , 'lr': args.lr*2 , 'weight_decay': 0.},
# {'params': net_parameters_id['conv5.weight'] , 'lr': args.lr*100 , 'weight_decay': args.weight_decay},
# {'params': net_parameters_id['conv5.bias'] , 'lr': args.lr*200 , 'weight_decay': 0.},
# {'params': net_parameters_id['conv_down_1-5.weight'], 'lr': args.lr*0.1 , 'weight_decay': args.weight_decay},
# {'params': net_parameters_id['conv_down_1-5.bias'] , 'lr': args.lr*0.2 , 'weight_decay': 0.},
# {'params': net_parameters_id['score_dsn_1-5.weight'], 'lr': args.lr*0.01 , 'weight_decay': args.weight_decay},
# {'params': net_parameters_id['score_dsn_1-5.bias'] , 'lr': args.lr*0.02 , 'weight_decay': 0.},
# {'params': net_parameters_id['score_final.weight'] , 'lr': args.lr*0.001, 'weight_decay': args.weight_decay},
# {'params': net_parameters_id['score_final.bias'] , 'lr': args.lr*0.002, 'weight_decay': 0.},
# ], lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
# scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
# log
log = Logger(join(TMP_DIR, '%s-%d-log.txt' %('sgd',args.lr)))
sys.stdout = log
train_loss = []
train_loss_detail = []
for epoch in range(args.start_epoch, args.maxepoch):
if epoch == 0:
print("Performing initial testing...")
multiscale_test(model, test_loader, epoch=epoch, test_list=test_list,
save_dir = join(TMP_DIR, 'initial-testing-record'))
tr_avg_loss, tr_detail_loss = train(
train_loader, model, optimizer, epoch,
save_dir = join(TMP_DIR, 'epoch-%d-training-record' % epoch))
test(model, test_loader, epoch=epoch, test_list=test_list,
save_dir = join(TMP_DIR, 'epoch-%d-testing-record-view' % epoch))
multiscale_test(model, test_loader, epoch=epoch, test_list=test_list,
save_dir = join(TMP_DIR, 'epoch-%d-testing-record' % epoch))
log.flush() # write log
# Save checkpoint
save_file = os.path.join(TMP_DIR, 'checkpoint_epoch{}.pth'.format(epoch))
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, filename=save_file)
scheduler.step() # will adjust learning rate
# save train/val loss/accuracy, save every epoch in case of early stop
train_loss.append(tr_avg_loss)
train_loss_detail += tr_detail_loss
def train(train_loader, model, optimizer, epoch, save_dir):
batch_time = Averagvalue()
data_time = Averagvalue()
losses = Averagvalue()
# switch to train mode
model.train()
end = time.time()
epoch_loss = []
counter = 0
for i, (image, label) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
image, label = image.cuda(), label.cuda()
outputs = model(image)
loss = torch.zeros(1).cuda()
for o in outputs:
loss = loss + cross_entropy_loss_RCF(o, label)
counter += 1
loss = loss / args.itersize
loss.backward()
if counter == args.itersize:
optimizer.step()
optimizer.zero_grad()
counter = 0
# measure accuracy and record loss
losses.update(loss.item(), image.size(0))
epoch_loss.append(loss.item())
batch_time.update(time.time() - end)
end = time.time()
# display and logging
if not isdir(save_dir):
os.makedirs(save_dir)
if i % args.print_freq == 0:
info = 'Epoch: [{0}/{1}][{2}/{3}] '.format(epoch, args.maxepoch, i, len(train_loader)) + \
'Time {batch_time.val:.3f} (avg:{batch_time.avg:.3f}) '.format(batch_time=batch_time) + \
'Loss {loss.val:f} (avg:{loss.avg:f}) '.format(
loss=losses)
print(info)
label_out = torch.eq(label, 1).float()
outputs.append(label_out)
_, _, H, W = outputs[0].shape
all_results = torch.zeros((len(outputs), 1, H, W))
for j in range(len(outputs)):
all_results[j, 0, :, :] = outputs[j][0, 0, :, :]
torchvision.utils.save_image(1-all_results, join(save_dir, "iter-%d.jpg" % i))
# save checkpoint
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, filename=join(save_dir, "epoch-%d-checkpoint.pth" % epoch))
return losses.avg, epoch_loss
def test(model, test_loader, epoch, test_list, save_dir):
model.eval()
if not isdir(save_dir):
os.makedirs(save_dir)
for idx, image in enumerate(test_loader):
image = image.cuda()
_, _, H, W = image.shape
results = model(image)
result = torch.squeeze(results[-1].detach()).cpu().numpy()
results_all = torch.zeros((len(results), 1, H, W))
for i in range(len(results)):
results_all[i, 0, :, :] = results[i]
filename = splitext(test_list[idx])[0]
torchvision.utils.save_image(1-results_all, join(save_dir, "%s.jpg" % filename))
result = Image.fromarray((result * 255).astype(np.uint8))
result.save(join(save_dir, "%s.png" % filename))
print("Running test [%d/%d]" % (idx + 1, len(test_loader)))
# torch.nn.functional.upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None)
def multiscale_test(model, test_loader, epoch, test_list, save_dir):
model.eval()
if not isdir(save_dir):
os.makedirs(save_dir)
scale = [0.5, 1, 1.5]
for idx, image in enumerate(test_loader):
image = image[0]
image_in = image.numpy().transpose((1,2,0))
_, H, W = image.shape
multi_fuse = np.zeros((H, W), np.float32)
for k in range(0, len(scale)):
im_ = cv2.resize(image_in, None, fx=scale[k], fy=scale[k], interpolation=cv2.INTER_LINEAR)
im_ = im_.transpose((2,0,1))
results = model(torch.unsqueeze(torch.from_numpy(im_).cuda(), 0))
result = torch.squeeze(results[-1].detach()).cpu().numpy()
fuse = cv2.resize(result, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse += fuse
multi_fuse = multi_fuse / len(scale)
### rescale trick suggested by jiangjiang
# multi_fuse = (multi_fuse - multi_fuse.min()) / (multi_fuse.max() - multi_fuse.min())
filename = splitext(test_list[idx])[0]
result_out = Image.fromarray(((1-multi_fuse) * 255).astype(np.uint8))
result_out.save(join(save_dir, "%s.jpg" % filename))
result_out_test = Image.fromarray((multi_fuse * 255).astype(np.uint8))
result_out_test.save(join(save_dir, "%s.png" % filename))
print("Running test [%d/%d]" % (idx + 1, len(test_loader)))
def weights_init(m):
if isinstance(m, nn.Conv2d):
# xavier(m.weight.data)
m.weight.data.normal_(0, 0.01)
if m.weight.data.shape == torch.Size([1, 5, 1, 1]):
# for new_score_weight
torch.nn.init.constant_(m.weight, 0.2)
if m.bias is not None:
m.bias.data.zero_()
if __name__ == '__main__':
main()