-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
202 lines (152 loc) · 7.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import logging
from typing import Optional
import vertexai
from google.cloud.aiplatform_v1beta1.services.vertex_rag_data_service.pagers import ListRagFilesPager
from vertexai.generative_models import GenerationConfig, GenerativeModel
from vertexai.preview import rag
from vertexai.preview.generative_models import Tool
from vertexai.preview.rag.utils.resources import RagCorpus, RagFile
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format='%(message)s')
def get_or_create_corpus(corpus_display_name: str) -> RagCorpus:
corpus = get_corpus_by_display_name(corpus_display_name)
if corpus:
logger.info("Existing corpus fetched:")
log_names(corpus)
else:
corpus = rag.create_corpus(display_name=corpus_display_name)
logger.info("Corpus created:")
log_names(corpus)
return corpus
def get_corpus_by_display_name(display_name: str) -> RagCorpus:
corpora = rag.list_corpora()
return next((corpus for corpus in corpora if corpus.display_name == display_name), None)
def list_corpus():
corpora = rag.list_corpora()
for corpus in corpora:
log_names(corpus)
def delete_corpus(corpus_name: str):
rag.delete_corpus(name=corpus_name)
logger.info(f"Corpus deleted: {corpus_name}")
def get_or_upload_file(corpus_name: str, path: str, display_name: Optional[str] = None,
description: Optional[str] = None) -> RagFile:
rag_file = get_file_by_display_name(corpus_name, display_name)
if rag_file:
logger.info(f"Existing file fetched from corpus: {corpus_name}")
else:
rag_file = rag.upload_file(
corpus_name=corpus_name,
path=path,
display_name=display_name,
description=description,
)
logger.info(f"File upload to corpus: {corpus_name}")
log_names(rag_file)
return rag_file
def get_file_by_display_name(corpus_name: str, display_name: str) -> RagFile:
files = rag.list_files(corpus_name=corpus_name)
file = next((file for file in files if file.display_name == display_name), None)
return file
def list_files(corpus_name: str) -> ListRagFilesPager:
files = rag.list_files(corpus_name=corpus_name)
logger.info(f"Files in corpus: {corpus_name}")
for file in files:
log_names(file)
return files
def log_names(file):
logger.info(f"-name: {file.name}")
logger.info(f" display_name: {file.display_name}")
def delete_file(file_name: str):
rag.delete_file(name=file_name)
logger.info(f"File {file_name} deleted.")
def direct_retrieve_from_rag_corpus(corpus_name: str, text: str):
response = rag.retrieval_query(
rag_resources=[
rag.RagResource(
rag_corpus=corpus_name
# Supply IDs from `rag.list_files()`.
# rag_file_ids=["rag-file-1", "rag-file-2", ...],
)
],
text=text,
similarity_top_k=10, # Optional
vector_distance_threshold=0.5, # Optional
)
logger.info(f"Text: {text}")
logger.info(f"Response: {response}")
def generate_text_with_llamaindex_vertexai(corpus_name: str, prompt: str):
model = GenerativeModel(model_name="gemini-1.5-flash-001")
logger.info(f"Corpus name: {corpus_name}")
tools = None
if corpus_name:
tools = [Tool.from_retrieval(
retrieval=rag.Retrieval(
source=rag.VertexRagStore(
rag_resources=[
rag.RagResource(
rag_corpus=corpus_name, # Currently only 1 corpus is allowed.
# Supply IDs from `rag.list_files()`.
# rag_file_ids=["rag-file-1", "rag-file-2", ...],
)
],
similarity_top_k=3, # Optional
vector_distance_threshold=0.5, # Optional
),
)
)]
response = model.generate_content(
prompt,
tools=tools,
generation_config=GenerationConfig(
temperature=0.0,
),
)
logger.info(f"Prompt: {prompt}")
logger.debug(f"Response: {response}")
logger.info(f"Response text: {response.candidates[0].content.parts[0].text}")
def get_args_parser():
parser = argparse.ArgumentParser(description="RAG with LlamaIndex on Vertex AI CLI")
parser.add_argument('--project_id', type=str, required=True, help='Google Cloud project id (required)')
# Subparsers for commands
subparsers = parser.add_subparsers(dest="command", required=True)
create_corpus_parser = subparsers.add_parser("create_corpus", help="Create a RAG corpus")
create_corpus_parser.add_argument("--display_name", type=str, required=True, help="Display name of the corpus")
subparsers.add_parser("list_corpus", help="List RAG corpora")
delete_corpus_parser = subparsers.add_parser("delete_corpus", help="Delete a RAG corpus")
delete_corpus_parser.add_argument("--corpus_name", type=str, required=True, help="Name of the corpus to delete")
upload_file_parser = subparsers.add_parser("upload_file", help="Upload a local file to a RAG corpus")
upload_file_parser.add_argument("--corpus_name", type=str, required=True, help="Name of the corpus")
upload_file_parser.add_argument("--path", type=str, required=True, help="Path to the file")
upload_file_parser.add_argument("--display_name", type=str, help="Display name for the file (optional)")
upload_file_parser.add_argument("--description", type=str, help="Description for the file (optional)")
list_files_parser = subparsers.add_parser("list_files", help="List files in a RAG corpus")
list_files_parser.add_argument("--corpus_name", type=str, required=True, help="Name of the corpus")
delete_file_parser = subparsers.add_parser("delete_file", help="Delete a file from a RAG corpus")
delete_file_parser.add_argument("--file_name", type=str, required=True, help="Name of the file to delete")
direct_retrieve_parser = subparsers.add_parser("direct_retrieve", help="Directly retrieve from RAG corpus")
direct_retrieve_parser.add_argument("--corpus_name", type=str, required=True, help="Name of the corpus")
direct_retrieve_parser.add_argument("--text", type=str, required=True, help="Text to retrieve")
generate_text_parser = subparsers.add_parser("generate_text", help="Generate text with LLM")
generate_text_parser.add_argument("--corpus_name", type=str, help="Name of the corpus (optional)")
generate_text_parser.add_argument("--prompt", type=str, required=True, help="Prompt for text generation")
return parser.parse_args()
def main():
args = get_args_parser()
vertexai.init(project=args.project_id, location="us-central1")
command_map = {
"create_corpus": lambda: get_or_create_corpus(args.display_name),
"list_corpus": list_corpus,
"delete_corpus": lambda: delete_corpus(args.corpus_name),
"upload_file": lambda: get_or_upload_file(args.corpus_name, args.path, args.display_name, args.description),
"list_files": lambda: list_files(args.corpus_name),
"delete_file": lambda: delete_file(args.file_name),
"direct_retrieve": lambda: direct_retrieve_from_rag_corpus(args.corpus_name, args.text),
"generate_text": lambda: generate_text_with_llamaindex_vertexai(args.corpus_name, args.prompt)
}
if args.command in command_map:
command_map[args.command]()
else:
print(f"Unknown command: {args.command}")
if __name__ == '__main__':
main()