-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classifier.py
213 lines (156 loc) · 6.9 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""Frankly cobbled together from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html"""
import time
import os
import copy
import argparse
import os
import logging
import torch
import torch.nn as nn
#from VGG import vgg_custom
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from prepare_image_model import create_dataloader, create_imagefolder
from logger import Logger
logging.basicConfig(level=logging.DEBUG)
LOG_STEPS=100
EPOCHS=16
LEARN_RATE=0.001
MOMENTUM=0.9
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
LOGGER=Logger('./logs')
def prepare_data(directory=None):
path = [os.getcwd()]
if directory:
path.append(directory)
dirs = {
'train': os.path.join(*path, 'train'),
'validate': os.path.join(*path, 'validate')}
images = {x: create_imagefolder(dirs[x]) for x in ['train', 'validate']}
data = {x: create_dataloader(images[x]) for x in ['train', 'validate']}
return (images, data)
def train_model(model, images, datasets, criterion, optimizer, scheduler, num_epochs=15, log=False):
dataset_sizes = {x: len(images[x]) for x in ['train', 'validate']}
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
step_count = 0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'validate']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in datasets[phase]:
inputs = inputs.to(DEVICE)
labels = labels.to(DEVICE)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# Sttempting to add Tensorboard logging her
optimizer.step()
if log:
step_count += 1
if (step_count+1) % LOG_STEPS == 0:
images = []
images, _ = next(iter(datasets[phase]))
tensorboard_logging(step_count, model, images, running_loss, running_corrects.double())
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'validate' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def tensorboard_logging(step=None, model=None, images=None, loss=None, accuracy=None):
"""Write logs for this step so we can see stae via Tensorboard"""
# 1. Log scalar values (scalar summary)
info = { 'loss': loss, 'accuracy': accuracy }
for tag, value in info.items():
LOGGER.scalar_summary(tag, value, step+1)
# 2. Log values and gradients of the parameters (histogram summary)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
LOGGER.histo_summary(tag, value.data.cpu().numpy(), step+1)
LOGGER.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), step+1)
# 3. Log training images (image summary)
info = { 'images': images.view(-1, 224, 224)[:10].cpu().numpy() }
for tag, images in info.items():
LOGGER.image_summary(tag, images, step+1)
def initialise_model(images, use_model=None, pretrained=True):
"""Create an empty model - TODO specify num_classes from datset
models.vgg11 - default
vgg_custom - VGG with custom AvgPool to avoid 224x224 limiti
simple_cnn - simplest thing that might possibly work
use_model - if supplied, look for this string as a method on
torchvision.models, likely will break on non-VGG setups
"""
classes = len(images['train'].classes)
logging.info(f'training model with {classes} classes')
params = {'pretrained': pretrained}
if not pretrained:
params['num_classes'] = classes
if use_model:
model = getattr(models, use_model)(**params)
else:
model = models.vgg11(**params)
# Reset the last fully connectted layer on a pre-trained VGG*
# VGG specific logic, last layer in self.classifier
if not pretrained:
num_ftrs = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(num_ftrs, classes)
model = model.to(DEVICE)
return model
def build_model(images, datasets, epochs=None, log=False, use_model=None, save_model='model', pretrained=True):
"""Run the training regime on the model and save its best effort"""
num_epochs = epochs
if not num_epochs: num_epochs = EPOCHS
model_ft = initialise_model(images, use_model=use_model, pretrained=pretrained)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=LEARN_RATE, momentum=MOMENTUM)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, images, datasets, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs, log=log)
torch.save(model_ft, os.path.join(os.getcwd(), save_model))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Train a model based on contents of a directory")
parser.add_argument(
'--directory',
help="Path of a directory on this host")
parser.add_argument(
'--log',
action='store_true')
args = parser.parse_args()
if args.log:
print('logging on')
images, datasets = prepare_data(directory=args.directory)
build_model(images, datasets, log=args.log)