-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththis_script_flask.py
118 lines (80 loc) · 3.33 KB
/
this_script_flask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from flask import Flask
app = Flask(__name__)
import cv2
import os
import time
import concurrent.futures
from multiprocessing import Pool, cpu_count
import psutil
# import cProfile
# import re
# cProfile.run('re.compile("foo|bar")')
sample = cv2.imread('SOCOFing/Altered/Altered-Easy/1__M_Left_little_finger_CR.BMP')
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(sample, None)
def compute_keypoints_descriptors(file):
fingerprint_image = cv2.imread(os.path.join('SOCOFing/Real/', file))
kp2, des2 = sift.detectAndCompute(fingerprint_image, None)
kp2_info = [(kp.pt, kp.size, kp.angle, kp.response, kp.octave, kp.class_id) for kp in kp2]
return file, kp2_info, des2
all_kp2_des2 = []
# with Pool(cpu_count()) as p:
for file in os.listdir('SOCOFing/Real/'):
print(file)
all_kp2_des2.append(compute_keypoints_descriptors(file))
# all_kp2_des2= p.map(compute_keypoints_descriptors, os.listdir('SOCOFing/Real/'))
all_kp2_des2 = all_kp2_des2 * 3
# iterate all the images in SOCOFing/Real/ and compute the keypoints and descriptors
# all_kp2_des2 = []
# fingerprint_image = cv2.imread(os.path.join('SOCOFing/Real/', file))
# kp2, des2 = sift.detectAndCompute(fingerprint_image, None)
# kp2_info = [(kp.pt, kp.size, kp.angle, kp.response, kp.octave, kp.class_id) for kp in kp2]
# all_kp2_des2.append((file, kp2_info, des2))
def knn_match(args):
fil, kp2_info, des2 = args
kp2 = [cv2.KeyPoint(x, y, _size, _angle, _response, _octave, _class_id)
for (x, y), _size, _angle, _response, _octave, _class_id in kp2_info]
matches = cv2.FlannBasedMatcher({'algorithm': 1, 'trees': 10}, {}).knnMatch(des1, des2, k=2)
match_point = []
for p, q in matches:
if p.distance < 0.1 * q.distance:
match_point.append(p)
keypoints = min(len(kp1), len(kp2))
score = len(match_point) / keypoints * 100
return fil, score
def dmain():
#if __name__ == '__main__':
process_time = time.time()
#NOTE kp1 is list of keypoints and des is numpy array of shape (number_of_keypoints, 128)
# ggdf = cv2.drawKeypoints(sample, kp1, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# cv2.imwrite('keypoints.jpg', ggdf) // to draw the keypoints of the fingerprint image
end_process_time = time.time()
best_score = 0
best_match = None
knn_start = time.time()
# with concurrent.futures.ProcessPoolExecutor() as p:
# count number of process
with Pool() as p:
print('Number of CPU:', cpu_count())
results = p.map(knn_match, all_kp2_des2)
knn_end = time.time()
print("Number of fingers we ran search on: ",len(results))
loop_time_start = time.time()
for fil, score in results:
if score > best_score:
best_score = score
best_match = fil
loop_time_end = time.time()
print('Best Score:', best_score)
print('Filename:', best_match)
print('Knn Time (Actual time that machine will take):', knn_end - knn_start)
print('Image Process Time (We will pre-compute it):', end_process_time - process_time)
print('Loop Time:', loop_time_end - loop_time_start)
print('Total Time:', time.time() - process_time)
@app.route('/')
def ass():
dmain()
print("niggaaaa")
return "nigaaaaaa"
if __name__ == '__main__':
app.run(debug=True)