-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdataset.py
34 lines (28 loc) · 967 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import glob
import os
import util
import config
class Dataset:
def __init__(self, path):
self.index_in_epoch = 0
self.examples = np.array(glob.glob(path))
self.num_examples = len(self.examples)
np.random.shuffle(self.examples)
print "dataset path:", path
print "number of examples:", self.num_examples
def next_batch(self, batch_size):
start = self.index_in_epoch
self.index_in_epoch += batch_size
if self.index_in_epoch > self.num_examples:
np.random.shuffle(self.examples)
start = 0
self.index_in_epoch = batch_size
assert batch_size <= self.num_examples
end = self.index_in_epoch
return self.read_data(start, end)
def read_data(self, start, end):
data = []
for fname in self.examples[start:end]:
data.append(util.read_binvox(fname))
return np.array(data)