forked from camlab-ethz/poseidon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
537 lines (493 loc) · 18.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""
This script trains a scOT or pretrains Poseidon on a PDE dataset.
Can be also used for finetuning Poseidon.
Can be used in a single config or sweep setup.
"""
import argparse
import torch
import wandb
import numpy as np
import random
import json
import psutil
import os
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
import yaml
import matplotlib.pyplot as plt
import transformers
from accelerate.utils import broadcast_object_list
from scOT.trainer import TrainingArguments, Trainer
from transformers import EarlyStoppingCallback
from scOT.model import ScOT, ScOTConfig
from mpl_toolkits.axes_grid1 import ImageGrid
from scOT.problems.base import get_dataset, BaseTimeDataset
from scOT.utils import get_num_parameters, read_cli, get_num_parameters_no_embed
from scOT.metrics import relative_lp_error
SEED = 0
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
MODEL_MAP = {
"T": {
"num_heads": [3, 6, 12, 24],
"skip_connections": [2, 2, 2, 0],
"window_size": 16,
"patch_size": 4,
"mlp_ratio": 4.0,
"depths": [4, 4, 4, 4],
"embed_dim": 48,
},
"S": {
"num_heads": [3, 6, 12, 24],
"skip_connections": [2, 2, 2, 0],
"window_size": 16,
"patch_size": 4,
"mlp_ratio": 4.0,
"depths": [8, 8, 8, 8],
"embed_dim": 48,
},
"B": {
"num_heads": [3, 6, 12, 24],
"skip_connections": [2, 2, 2, 0],
"window_size": 16,
"patch_size": 4,
"mlp_ratio": 4.0,
"depths": [8, 8, 8, 8],
"embed_dim": 96,
},
"L": {
"num_heads": [3, 6, 12, 24],
"skip_connections": [2, 2, 2, 0],
"window_size": 16,
"patch_size": 4,
"mlp_ratio": 4.0,
"depths": [8, 8, 8, 8],
"embed_dim": 192,
},
}
def create_predictions_plot(predictions, labels, wandb_prefix):
assert predictions.shape[0] >= 4
indices = random.sample(range(predictions.shape[0]), 4)
predictions = predictions[indices]
labels = labels[indices]
fig = plt.figure()
grid = ImageGrid(
fig, 111, nrows_ncols=(predictions.shape[1] + labels.shape[1], 4), axes_pad=0.1
)
vmax, vmin = max(predictions.max(), labels.max()), min(
predictions.min(), labels.min()
)
for _i, ax in enumerate(grid):
i = _i // 4
j = _i % 4
if i % 2 == 0:
ax.imshow(
predictions[j, i // 2, :, :],
cmap="gist_ncar",
origin="lower",
vmin=vmin,
vmax=vmax,
)
else:
ax.imshow(
labels[j, i // 2, :, :],
cmap="gist_ncar",
origin="lower",
vmin=vmin,
vmax=vmax,
)
ax.set_xticks([])
ax.set_yticks([])
wandb.log({wandb_prefix + "/predictions": wandb.Image(fig)})
plt.close()
def setup(params, model_map=True):
config = None
RANK = int(os.environ.get("LOCAL_RANK", -1))
CPU_CORES = len(psutil.Process().cpu_affinity())
CPU_CORES = min(CPU_CORES, 16)
print(f"Detected {CPU_CORES} CPU cores, will use {CPU_CORES} workers.")
if params.disable_tqdm:
transformers.utils.logging.disable_progress_bar()
if params.json_config:
config = json.loads(params.config)
else:
config = params.config
if RANK == 0 or RANK == -1:
run = wandb.init(
project=params.wandb_project_name, name=params.wandb_run_name, config=config
)
config = wandb.config
else:
def clean_yaml(config):
d = {}
for key, inner_dict in config.items():
d[key] = inner_dict["value"]
return d
if not params.json_config:
with open(params.config, "r") as s:
config = yaml.safe_load(s)
config = clean_yaml(config)
run = None
ckpt_dir = "./"
if RANK == 0 or RANK == -1:
if run.sweep_id is not None:
ckpt_dir = (
params.checkpoint_path
+ "/"
+ run.project
+ "/"
+ run.sweep_id
+ "/"
+ run.name
)
else:
ckpt_dir = params.checkpoint_path + "/" + run.project + "/" + run.name
if (RANK == 0 or RANK == -1) and not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
ls = broadcast_object_list([ckpt_dir], from_process=0)
ckpt_dir = ls[0]
if model_map and (
type(config["model_name"]) == str and config["model_name"] in MODEL_MAP.keys()
):
config = {**config, **MODEL_MAP[config["model_name"]]}
if RANK == 0 or RANK == -1:
wandb.config.update(MODEL_MAP[config["model_name"]], allow_val_change=True)
return run, config, ckpt_dir, RANK, CPU_CORES
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train scOT or pretrain Poseidon.")
parser.add_argument("--resume_training", action="store_true")
parser.add_argument(
"--finetune_from",
type=str,
default=None,
help="Set this to a str pointing to a HF Hub model checkpoint or a directory with a scOT checkpoint if you want to finetune.",
)
parser.add_argument(
"--replace_embedding_recovery",
action="store_true",
help="Set this if you have to replace the embeddings and recovery layers because you are not just using the density, velocity and pressure channels. Only relevant for finetuning.",
)
params = read_cli(parser).parse_args()
run, config, ckpt_dir, RANK, CPU_CORES = setup(params)
train_eval_set_kwargs = (
{"just_velocities": True}
if ("incompressible" in config["dataset"]) and params.just_velocities
else {}
)
if params.move_data is not None:
train_eval_set_kwargs["move_to_local_scratch"] = params.move_data
if params.max_num_train_time_steps is not None:
train_eval_set_kwargs["max_num_time_steps"] = params.max_num_train_time_steps
if params.train_time_step_size is not None:
train_eval_set_kwargs["time_step_size"] = params.train_time_step_size
if params.train_small_time_transition:
train_eval_set_kwargs["allowed_time_transitions"] = [1]
train_dataset = get_dataset(
dataset=config["dataset"],
which="train",
num_trajectories=config["num_trajectories"],
data_path=params.data_path,
**train_eval_set_kwargs,
)
eval_dataset = get_dataset(
dataset=config["dataset"],
which="val",
num_trajectories=config["num_trajectories"],
data_path=params.data_path,
**train_eval_set_kwargs,
)
config["effective_train_set_size"] = len(train_dataset)
time_involved = isinstance(train_dataset, BaseTimeDataset) or (
isinstance(train_dataset, torch.utils.data.ConcatDataset)
and isinstance(train_dataset.datasets[0], BaseTimeDataset)
)
if not isinstance(train_dataset, torch.utils.data.ConcatDataset):
resolution = train_dataset.resolution
input_dim = train_dataset.input_dim
output_dim = train_dataset.output_dim
channel_slice_list = train_dataset.channel_slice_list
printable_channel_description = train_dataset.printable_channel_description
else:
resolution = train_dataset.datasets[0].resolution
input_dim = train_dataset.datasets[0].input_dim
output_dim = train_dataset.datasets[0].output_dim
channel_slice_list = train_dataset.datasets[0].channel_slice_list
printable_channel_description = train_dataset.datasets[
0
].printable_channel_description
model_config = (
ScOTConfig(
image_size=resolution,
patch_size=config["patch_size"],
num_channels=input_dim,
num_out_channels=output_dim,
embed_dim=config["embed_dim"],
depths=config["depths"],
num_heads=config["num_heads"],
skip_connections=config["skip_connections"],
window_size=config["window_size"],
mlp_ratio=config["mlp_ratio"],
qkv_bias=True,
hidden_dropout_prob=0.0, # default
attention_probs_dropout_prob=0.0, # default
drop_path_rate=0.0,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
p=1,
channel_slice_list_normalized_loss=channel_slice_list,
residual_model="convnext",
use_conditioning=time_involved,
learn_residual=False,
)
if params.finetune_from is None or params.replace_embedding_recovery
else None
)
train_config = TrainingArguments(
output_dir=ckpt_dir,
overwrite_output_dir=True, #! OVERWRITE THIS DIRECTORY IN CASE, also for resuming training
evaluation_strategy="epoch",
per_device_train_batch_size=config["batch_size"],
per_device_eval_batch_size=config["batch_size"],
eval_accumulation_steps=16,
max_grad_norm=config["max_grad_norm"],
num_train_epochs=config["num_epochs"],
optim="adamw_torch",
learning_rate=config["lr"],
learning_rate_embedding_recovery=(
None
if (params.finetune_from is None or "lr_embedding_recovery" not in config)
else config["lr_embedding_recovery"]
),
learning_rate_time_embedding=(
None
if (params.finetune_from is None or "lr_time_embedding" not in config)
else config["lr_time_embedding"]
),
weight_decay=config["weight_decay"],
adam_beta1=0.9, # default
adam_beta2=0.999, # default
adam_epsilon=1e-8, # default
lr_scheduler_type=config["lr_scheduler"],
warmup_ratio=config["warmup_ratio"],
log_level="passive",
logging_strategy="steps",
logging_steps=5,
logging_nan_inf_filter=False,
save_strategy="epoch",
save_total_limit=1,
seed=SEED,
fp16=False,
dataloader_num_workers=CPU_CORES,
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
dataloader_pin_memory=True,
gradient_checkpointing=False,
auto_find_batch_size=False,
full_determinism=False,
torch_compile=False,
report_to="wandb",
run_name=params.wandb_run_name,
)
early_stopping = EarlyStoppingCallback(
early_stopping_patience=config["early_stopping_patience"],
early_stopping_threshold=0.0, # set no threshold for now
)
if params.finetune_from is not None:
model = ScOT.from_pretrained(
params.finetune_from, config=model_config, ignore_mismatched_sizes=True
)
else:
model = ScOT(model_config)
num_params = get_num_parameters(model)
config["num_params"] = num_params
num_params_no_embed = get_num_parameters_no_embed(model)
config["num_params_wout_embed"] = num_params_no_embed
if RANK == 0 or RANK == -1:
print(f"Model size: {num_params}")
print(f"Model size without embeddings: {num_params_no_embed}")
def compute_metrics(eval_preds):
channel_list = channel_slice_list
def get_statistics(errors):
median_error = np.median(errors, axis=0)
mean_error = np.mean(errors, axis=0)
std_error = np.std(errors, axis=0)
min_error = np.min(errors, axis=0)
max_error = np.max(errors, axis=0)
return {
"median_relative_l1_error": median_error,
"mean_relative_l1_error": mean_error,
"std_relative_l1_error": std_error,
"min_relative_l1_error": min_error,
"max_relative_l1_error": max_error,
}
error_statistics = [
get_statistics(
relative_lp_error(
eval_preds.predictions[:, channel_list[i] : channel_list[i + 1]],
eval_preds.label_ids[:, channel_list[i] : channel_list[i + 1]],
p=1,
return_percent=True,
)
)
for i in range(len(channel_list) - 1)
]
if output_dim == 1:
error_statistics = error_statistics[0]
return error_statistics
else:
mean_over_means = np.mean(
np.array(
[stats["mean_relative_l1_error"] for stats in error_statistics]
),
axis=0,
)
mean_over_medians = np.mean(
np.array(
[stats["median_relative_l1_error"] for stats in error_statistics]
),
axis=0,
)
error_statistics_ = {
"mean_relative_l1_error": mean_over_means,
"mean_over_median_relative_l1_error": mean_over_medians,
}
for i, stats in enumerate(error_statistics):
for key, value in stats.items():
error_statistics_[printable_channel_description[i] + "/" + key] = (
value
)
return error_statistics_
trainer = Trainer(
model=model,
args=train_config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
callbacks=[early_stopping],
)
trainer.train(resume_from_checkpoint=params.resume_training)
trainer.save_model(train_config.output_dir)
if (RANK == 0 or RANK == -1) and params.push_to_hf_hub is not None:
model.push_to_hub(params.push_to_hf_hub)
do_test = (
True
if params.max_num_train_time_steps is None
and params.train_time_step_size is None
and not params.train_small_time_transition
and not ".time" in config["dataset"]
else False
)
if do_test:
print("Testing...")
test_set_kwargs = (
{"just_velocities": True}
if ("incompressible" in config["dataset"]) and params.just_velocities
else {}
)
out_test_set_kwargs = (
{"just_velocities": True}
if ("incompressible" in config["dataset"]) and params.just_velocities
else {}
)
if params.move_data is not None:
test_set_kwargs["move_to_local_scratch"] = params.move_data
out_test_set_kwargs["move_to_local_scratch"] = params.move_data
if time_involved:
test_set_kwargs = {
**test_set_kwargs,
"max_num_time_steps": 1,
"time_step_size": 14,
"allowed_time_transitions": [1],
}
out_test_set_kwargs = {
**out_test_set_kwargs,
"max_num_time_steps": 1,
"time_step_size": 20,
"allowed_time_transitions": [1],
}
if "RayleighTaylor" in config["dataset"]:
test_set_kwargs = {
**test_set_kwargs,
"max_num_time_steps": 1,
"time_step_size": 7,
"allowed_time_transitions": [1],
}
out_test_set_kwargs = {
**out_test_set_kwargs,
"max_num_time_steps": 1,
"time_step_size": 10,
"allowed_time_transitions": [1],
}
test_dataset = get_dataset(
dataset=config["dataset"],
which="test",
num_trajectories=config["num_trajectories"],
data_path=params.data_path,
**test_set_kwargs,
)
try:
out_dist_test_dataset = get_dataset(
dataset=config["dataset"] + ".out",
which="test",
num_trajectories=config["num_trajectories"],
data_path=params.data_path,
**out_test_set_kwargs,
)
except:
out_dist_test_dataset = None
predictions = trainer.predict(test_dataset, metric_key_prefix="")
if RANK == 0 or RANK == -1:
metrics = {}
for key, value in predictions.metrics.items():
metrics["test/" + key[1:]] = value
wandb.log(metrics)
create_predictions_plot(
predictions.predictions,
predictions.label_ids,
wandb_prefix="test",
)
# evaluate on out-of-distribution test set
if out_dist_test_dataset is not None:
predictions = trainer.predict(out_dist_test_dataset, metric_key_prefix="")
if RANK == 0 or RANK == -1:
metrics = {}
for key, value in predictions.metrics.items():
metrics["test_out_dist/" + key[1:]] = value
wandb.log(metrics)
create_predictions_plot(
predictions.predictions,
predictions.label_ids,
wandb_prefix="test_out_dist",
)
if time_involved and (test_set_kwargs["time_step_size"] // 2 > 0):
trainer.set_ar_steps(test_set_kwargs["time_step_size"] // 2)
predictions = trainer.predict(test_dataset, metric_key_prefix="")
if RANK == 0 or RANK == -1:
metrics = {}
for key, value in predictions.metrics.items():
metrics["test/ar/" + key[1:]] = value
wandb.log(metrics)
create_predictions_plot(
predictions.predictions,
predictions.label_ids,
wandb_prefix="test/ar",
)
# evaluate on out-of-distribution test set
if out_dist_test_dataset is not None:
trainer.set_ar_steps(out_test_set_kwargs["time_step_size"] // 2)
predictions = trainer.predict(
out_dist_test_dataset, metric_key_prefix=""
)
if RANK == 0 or RANK == -1:
metrics = {}
for key, value in predictions.metrics.items():
metrics["test_out_dist/ar/" + key[1:]] = value
wandb.log(metrics)
create_predictions_plot(
predictions.predictions,
predictions.label_ids,
wandb_prefix="test_out_dist/ar",
)