-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_db_DTW_graph_chose_x_y.py
366 lines (332 loc) · 13.8 KB
/
make_db_DTW_graph_chose_x_y.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# this program provides a table line (and a graph, if needed) for all the lines of a table that compares different realizations of a single target word at a time.
# Warning : this program does NOT transpose ANY data, so the reference cost matrix is lcm. A consequence is that X and Y axes have been permuted for graphical represenations.
import os
import statistics
from pathlib import Path
import numpy as np
import pandas as pd
import pickle
import matplotlib.pyplot as plt
from dtw import *
import argparse
from numpy import unravel_index
from matplotlib.patches import ConnectionPatch
import scipy.spatial.distance as dist
from scipy.io import wavfile
import librosa
import librosa.display
import textgrid
import math
def dp(dist_mat):
"""
Find minimum-cost path through matrix `dist_mat` using dynamic programming.
The cost of a path is defined as the sum of the matrix entries on that
path. See the following for details of the algorithm:
- http://en.wikipedia.org/wiki/Dynamic_time_warping
- https://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/dp.m
The notation in the first reference was followed, while Dan Ellis's code
(second reference) was used to check for correctness. Returns a list of
path indices and the cost matrix.
"""
N, M = dist_mat.shape
# Initialize the cost matrix
cost_mat = np.zeros((N + 1, M + 1))
for i in range(1, N + 1):
cost_mat[i, 0] = np.inf
for i in range(1, M + 1):
cost_mat[0, i] = np.inf
# Fill the cost matrix while keeping traceback information
traceback_mat = np.zeros((N, M))
for i in range(N):
for j in range(M):
penalty = [
cost_mat[i, j], # match (0)
cost_mat[i, j + 1], # insertion (1)
cost_mat[i + 1, j]] # deletion (2)
i_penalty = np.argmin(penalty)
cost_mat[i + 1, j + 1] = dist_mat[i, j] + penalty[i_penalty]
traceback_mat[i, j] = i_penalty
# Traceback from bottom right
i = N - 1
j = M - 1
path = [(i, j)]
while i > 0 or j > 0:
tb_type = traceback_mat[i, j]
if tb_type == 0:
# Match
i = i - 1
j = j - 1
elif tb_type == 1:
# Insertion
i = i - 1
elif tb_type == 2:
# Deletion
j = j - 1
path.append((i, j))
# Strip infinity edges from cost_mat before returning
cost_mat = cost_mat[1:, 1:]
return (path[::-1], cost_mat)
##############################################################################################
# Prog ppal
##############################################################################################
parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", required=True, type=Path)
parser.add_argument("--work_file", required=True, type=Path)
parser.add_argument("--fich_x", required=True, type=Path)
parser.add_argument("--locut_x", required=True, type=Path)
parser.add_argument("--fich_y", required=True, type=Path)
parser.add_argument("--locut_y", required=True, type=Path)
parser.add_argument("--out_dir", required=True, type=Path)
args = parser.parse_args()
df=pd.read_pickle(args.work_dir / args.work_file)
print(str(args.work_file).split("_")[1].split("-")[0])
LAYPFX=f"L{str(args.work_file).split('_')[1].split('-')[0]}"
#Filter on target word
df=df[df['words_x'].astype(str) == str(args.work_file).split("-")[0]]
df["filepath_x"]=df["filename_x"]
df["filepath_y"]=df["filename_y"]
df["filegrid_x"] = df["filename_x"].apply(lambda x: textgrid.TextGrid.fromFile(x.with_suffix('.TextGrid')))
df["filegrid_y"] = df["filename_y"].apply(lambda x: textgrid.TextGrid.fromFile(x.with_suffix('.TextGrid')))
#help(df["filegrid_x"][0])
for i, row in df.iterrows():
#print(i)
#print(row)
if ((row["filegrid_x"][0].name != "words") or (row["filegrid_y"][0].name != "words")):
print("script is inadequate")
print(f"{row['filegrid_x'][0].name} is incorrectly named on x (should be 'words', small cap)")
print(f"{row['filegrid_y'][0].name} is incorrectly named on y (should be 'words', small cap)")
sys.exit()
for interval in row["filegrid_x"][0].intervals :
if interval.mark.replace("\t", "") == row["words_x"]:
df.at[i,'minTime_x'] = interval.minTime
df.at[i,'maxTime_x'] = interval.maxTime
for interval in row["filegrid_y"][0].intervals :
if interval.mark.replace("\t", "") == row["words_y"]:
df.at[i,'minTime_y'] = interval.minTime
df.at[i,'maxTime_y'] = interval.maxTime
print(df[df.index == 11849])
#combinations of all speaker_x, speaker_y : by design
df["filename_x"]=df["filename_x"].astype(str).apply(lambda x: x.split("/")[3].split("_")[3].replace(".wav", ""))
df["filename_y"]=df["filename_y"].astype(str).apply(lambda x: x.split("/")[3].split("_")[3].replace(".wav", ""))
#print(df[['filename_x','filename_y', 'speaker_x', 'speaker_y']])
df = df[(df['filename_x']==str(args.fich_x))&(df['speaker_x']==str(args.locut_x))&(df['filename_y']==str(args.fich_y))&(df['speaker_y']==str(args.locut_y))]
#print(df["interval_x"])
listR = []
for index, couple in df.iterrows():
#Partie 1 : le chemin optimal
# print(f"item en cours: {couple}")
xname=f"{couple['speaker_x']}-{couple['filename_x']}"
yname=f"{couple['speaker_y']}-{couple['filename_y']}"
# print(f"En x: {xname}")
# print(f"En y: {yname}")
a=couple["DTW"] # DTW
b=couple["Cdist"]
a1=a.index1[-1] # indice horizontal
a2=a.index2[-1] # indice vertical
lcm=a.costMatrix
mini=max(a1,a2)
maxi=a1 + a2
# print(f"path attendu entre: {mini} et {maxi}")
# print("pour construire ce path:")
# print(a.index1)
# print(a.index2)
j=0
k=0
listD1=[]
listD2=[]
for i in range(len(a.index1)-1):
if (a.index1[i+1]-a.index1[i] == 1):
listD1.append([a.index1[i],0])
elif (a.index1[i+1]-a.index1[i] == 0):
listD1.append([a.index1[i],1])
else:
print(a.index1[i+1])
print(a.index1[i])
print("erreur")
sys.exit()
for i in range(len(a.index2)-1):
if (a.index2[i+1]-a.index2[i] == 1):
listD2.append([a.index2[i],0])
elif (a.index2[i+1]-a.index2[i] == 0):
listD2.append([a.index2[i],1])
else:
print(a.index2[i+1])
print(a.index2[i])
print("erreur")
sys.exit()
# print(b)
listcos=[]
if a1 == a2:
for i in range(max(a1,a2)):
listcos.append(b[i,i])
listcos.append(b[i,i-1])
listcos.append(b[i-1,i])
elif a1 > a2:
for i in range(min(a1,a2)):
listcos.append(b[i,i])
for j in range(max(a1,a2)-min(a1,a2)):
listcos.append(b[i+j,i])
elif a1 < a2:
for i in range(min(a1,a2)):
listcos.append(b[i,i])
for j in range(max(a1,a2)-min(a1,a2)):
listcos.append(b[i,i+j])
list3m=[max(a1,a2)-min(a1,a2),min(listcos),max(listcos),statistics.fmean(listcos),statistics.stdev(listcos)]
grad_row, grad_col = np.gradient(b)
# print("row")
# print(grad_row)
abs_row=abs(grad_row)
abs_col=abs(grad_col)
# print(np.max(abs_row))np.array
# print(abs_row.argmax())
# print("col")
# print(grad_col)
# print(np.max(abs_col))
# print(abs_col.argmax())
maxinrow=unravel_index(abs_row.argmax(), abs_row.shape)
maxincol=unravel_index(abs_col.argmax(), abs_col.shape)
# print(maxinrow)
# print(maxincol)
if (len(a.index1) != len(a.index2)):
print("inconsistent length")
sys.exit()
listR.append([couple['speaker_x'], couple['filename_x'], couple['speaker_y'], couple['filename_y'], a.index1, a.index2, mini, maxi, len(a.index1), (len(a.index1)-mini)/(maxi-mini), listD1, listD2, a1, a2, a.distance, a.normalizedDistance,maxinrow,np.max(abs_row),maxincol,np.max(abs_col),list3m])
xname=f"{couple['speaker_x']}-{couple['filename_x']}"
yname=f"{couple['speaker_y']}-{couple['filename_y']}"
#Partie 2 : DTW dans l'espace audio
#X
f_sx, x = wavfile.read(couple["filepath_x"])
print("ici")
print(couple["filepath_x"])
print(couple["minTime_x"])
print(couple["maxTime_x"])
lower_bound = int(couple["minTime_x"]*f_sx)
upper_bound = int(couple["maxTime_x"]*f_sx)
x = x[lower_bound:upper_bound]
n_fft = int(0.025*f_sx) # 25 ms
hop_length = int(0.01*f_sx) # 10 ms
mel_spec_x = librosa.feature.melspectrogram(
y=x/1.0, sr=f_sx, n_mels=40,
n_fft=n_fft, hop_length=hop_length
)
log_mel_spec_x = np.log(mel_spec_x)
x_seq = log_mel_spec_x.T
print(x_seq.shape[0])
#Y
f_sy, y = wavfile.read(couple["filepath_y"])
print("la")
print(couple["minTime_y"])
print(couple["maxTime_y"])
lower_bound = int(couple["minTime_y"]*f_sy)
upper_bound = int(couple["maxTime_y"]*f_sy)
y = y[lower_bound:upper_bound]
n_fft = int(0.025*f_sy) # 25 ms
hop_length = int(0.01*f_sy) # 10 ms
mel_spec_y = librosa.feature.melspectrogram(
y=y/1.0, sr=f_sy, n_mels=40,
n_fft=n_fft, hop_length=hop_length
)
log_mel_spec_y = np.log(mel_spec_y)
y_seq = log_mel_spec_y.T
print(y_seq.shape[0])
dist_mat = dist.cdist(x_seq, y_seq, "cosine")
path, cost_mat = dp(dist_mat)
print("Alignment cost: {:.4f}".format(cost_mat[-1, -1]))
# path=path*49/100
scaled_path=[]
for xi, yj in path:
scaled_path.append((xi*49/100, yj*49/100))
scaled_path_x, scaled_path_y = zip(*scaled_path)
scaled_path_x = list(scaled_path_x)
scaled_path_y = list(scaled_path_y)
print("en x : ", scaled_path_x)
print("en y : ", scaled_path_y)
#Partie 3 : plots
# 2D tile plot
# sing_plot = plt.figure(figsize=(3, 2))
# plt.imshow(lcm.T, origin='lower', cmap='gray', interpolation='nearest')
# plt.xlabel(xname)
# plt.ylabel(yname)
# plt.title('')
# plt.show()
# Warning : in the following plot, switching between x and y is INTENTIONAL.
# => maxinrow[1],maxinrow[0] is in the order, and the xlabel, ylabel are correct.
# Gradient 2D tile plot
# sing_plot = plt.figure(figsize=(3, 2))
# plt.imshow(b, origin='lower', cmap='viridis', interpolation='nearest')
# plt.colorbar(label='Cosine Dist')
# xb = np.arange(b.shape[1])
# yb = np.arange(b.shape[0])
# Xb, Yb = np.meshgrid(xb, yb)
# plt.quiver(Xb, Yb, grad_row, grad_col, color='white', scale=10)
# plt.plot(maxinrow[1],maxinrow[0], color='red', marker='o', markersize=3, label='')
# plt.plot(maxincol[1],maxincol[0], color='orange', marker='o', markersize=3, label='')
# plt.xlabel(yname)
# plt.ylabel(xname)
# plt.title('')
# plt.show()
#3D plot
# x = np.arange(lcm.T.shape[1]) # 13 values for the columns (axis 1)
# y = np.arange(lcm.T.shape[0]) # 12 values for the rows (axis 0)
# A1, A2 = np.meshgrid(x, y)
# fig = plt.figure()
# ax = fig.add_subplot(projection = '3d')
# surf = ax.plot_surface(A1, A2, lcm.T)
# plt.show()
#Audio DTW plot
os.chdir(args.out_dir)
fig = plt.figure(figsize=(10, 16))
#ax1 = fig.add_subplot(321)
#ax1.set_xlabel(xname)
#ax1.xaxis.set_label_position('top')
#ax2 = fig.add_subplot(323)
#ax2.set_xlabel(yname)
#ax1.imshow(log_mel_spec_x, origin="lower", interpolation="nearest")
#ax2.imshow(log_mel_spec_y, origin="lower", interpolation="nearest")
#for x_i, y_j in path:
#con = ConnectionPatch(
#xyA=(x_i, 0), xyB=(y_j, log_mel_spec_y.shape[0] - 1), coordsA="data", coordsB="data",
#axesA=ax1, axesB=ax2, color="C7"
#)
#ax2.add_artist(con)
#horizontal stacking
ax3 = fig.add_subplot(121)
#vertical stacking
# ax3 = fig.add_subplot(211)
ax3.imshow(lcm.T, origin='lower', cmap='gray', interpolation='nearest')
ax3.set_xlabel(xname)
ax3.set_ylabel(yname)
ax3.plot(a.index1, a.index2, color='red', marker='x', markersize=3, label="vect. DTW")
ax3.plot(scaled_path_x, scaled_path_y, color='green', marker='o', markersize=3, label="Audio DTW")
ax3.set_title("Vector cost Matrix ; alignment cost={:.4f}".format(cost_mat[-1, -1]))
ax3.set_xlim([-0.5, lcm.T.shape[1]-0.5])
ax3.set_ylim([-0.5, lcm.T.shape[0]-0.5])
xb = np.arange(b.shape[1])
yb = np.arange(b.shape[0])
Xb, Yb = np.meshgrid(xb, yb)
#horizontal stacking
ax4 = fig.add_subplot(122)
#vertical stacking
# ax4 = fig.add_subplot(212)
ax4.quiver(Yb, Xb, grad_col, grad_row, color='white', scale=5)
ax4.plot(maxinrow[0], maxinrow[1],color='red', marker='o', markersize=3, label='')
ax4.plot(maxincol[0], maxincol[1],color='orange', marker='o', markersize=3, label='')
ax4.imshow(b.T, origin='lower', cmap='twilight', interpolation='nearest')
ax4.plot(a.index1, a.index2, color='red', marker='x', markersize=3, label="vect. DTW")
ax4.plot(scaled_path_x, scaled_path_y, color='green', marker='o', markersize=3, label="Audio DTW")
ax4.set_title("cosine distance")
ax4.set_xlim([-0.5, lcm.T.shape[1]-0.5])
ax4.set_ylim([-0.5, lcm.T.shape[0]-0.5])
ax4.set_xlabel(xname)
ax4.set_ylabel(yname)
fig.figure.savefig(f"{LAYPFX}_{args.fich_x}-{args.locut_x}_vs_{args.fich_y}-{args.locut_y}_2DTW.pdf", bbox_inches='tight')
#print(str(lcm.T.shape[0]),str(lcm.T.shape[1]))
# plt.show()
# plt.close()
#dR = pd.DataFrame(listR)
#dR.columns = ["spk_x", "file_x", "spk_y", "file_y", "index1", "index2", "min", "max", "path", "R", 'dev_x', 'dev_y', 'm', 'n', 'dist_A', 'dist_N','MrowGpos','MrowG','McolGpos','McolG','Cdistinfo']
#MrowGpos : maximum row-gradient position ; McolGpos : maximum column-gradient position.
#Cdistinfo : difference between col and row #, list of cos_dist on the diagonal(s), mean ans stdev for this same list.
#print("writing to output...")
#output_name = f"table_{str(args.work_file)}"
#dR.to_pickle(args.work_dir / output_name)