-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsimulate.py
205 lines (165 loc) · 9.34 KB
/
simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
from flearn.servers.optimum import Optim
from flearn.servers.server_avg import FedAvg
from flearn.servers.server_scaffold import SCAFFOLD
from flearn.trainmodel.models import *
from utils.plot_utils import *
from utils.autograd_hacks import *
import torch
def find_optimum(dataset, model, number, dim_input, dim_output, dim_pca=None, similarity=None, alpha=0., beta=0.):
torch.manual_seed(0) # for initialisation of the models
use_cuda = torch.cuda.is_available()
# Generate model
if model == "mclr": # for Femnist, MNIST, Logistic datasets
model = MclrLogistic(input_dim=dim_input, output_dim=dim_output), model
if model == "NN1": # for Femnist, MNIST datasets
model = NN1(input_dim=dim_input, output_dim=dim_output), model
if model == "NN1_PCA": # for Femnist, MNIST dataset
model = NN1_PCA(input_dim=dim_pca, output_dim=dim_output), model
if model == "CNN": # for CIFAR-10 dataset
model = CNN(output_dim=dim_output), model
if use_cuda:
print("Using GPU")
server = Optim(dataset, model, number, similarity, alpha, beta, dim_pca, use_cuda)
server.train()
def simulate(dataset, algorithm, model, dim_input, dim_output, nb_users, nb_samples, sample_ratio, user_ratio,
weight_decay, local_learning_rate, max_norm, local_updates, noise, times, dp, sigma_gaussian, dim_pca,
similarity=None, alpha=0., beta=0., number=0, num_glob_iters=400, time=None):
users_per_round = int(nb_users * user_ratio)
L = weight_decay
print("=" * 80)
print("Summary of training process:")
print(f"Algorithm: {algorithm}")
if dp == "Gaussian":
print(f"Differential Privacy : Gaussian Mechanism with sigma_g={sigma_gaussian}")
else:
print(f"Noise free version")
print(f"Subset of users : {users_per_round if users_per_round else 'all users'}")
print(f"Number of local updates : {local_updates}")
print(f"Number of communication rounds : {num_glob_iters}")
print(f"Dataset : {dataset}")
if similarity is not None:
print(f"Data Similarity : {similarity}")
else:
print(f"Data Similarity : {(alpha, beta)}")
print(f"Local Model : {model}")
print("=" * 80)
beg = 0
end = times
# to process only 1 run
if time is not None:
beg = time
end = min(time + 1, times)
for i in range(beg, end):
torch.manual_seed(0) # for initialisation of the models
use_cuda = torch.cuda.is_available()
if use_cuda:
print("Using GPU")
print("---------------Running time:------------", i)
# Generate model
# add_hooks: useful to get per-sample gradients
if model == "mclr": # for Femnist, MNIST, Logistic datasets
model = MclrLogistic(input_dim=dim_input, output_dim=dim_output), model
add_hooks(model[0])
if model == "NN1": # for Femnist, MNIST datasets
model = NN1(input_dim=dim_input, output_dim=dim_output), model
add_hooks(model[0])
if model == "NN1_PCA": # for Femnist, MNIST datasets
model = NN1_PCA(input_dim=dim_pca, output_dim=dim_output), model
add_hooks(model[0])
if model == "CNN": # for CIFAR-10 dataset
model = CNN(output_dim=dim_output), model
add_hooks(model[0])
# select algorithm
if algorithm == "FedAvg" or algorithm == "FedSGD":
server = FedAvg(dataset, algorithm, model, nb_users, nb_samples, user_ratio, sample_ratio, L,
local_learning_rate, max_norm, num_glob_iters, local_updates, users_per_round, similarity,
noise, i, dp, sigma_gaussian, alpha, beta, number, dim_pca, use_cuda)
elif algorithm == "SCAFFOLD":
server = SCAFFOLD(dataset, algorithm, model, nb_users, nb_samples, user_ratio, sample_ratio, L,
local_learning_rate, max_norm, num_glob_iters, local_updates, users_per_round, similarity,
noise, i, dp, sigma_gaussian, alpha, beta, number, dim_pca, use_cuda, warm_start=False)
elif algorithm == "SCAFFOLD-warm":
server = SCAFFOLD(dataset, algorithm, model, nb_users, nb_samples, user_ratio, sample_ratio, L,
local_learning_rate, max_norm, num_glob_iters, local_updates, users_per_round, similarity,
noise, i, dp, sigma_gaussian, alpha, beta, number, dim_pca, use_cuda, warm_start=True)
server.train()
# Average results
if similarity is None:
similarity = (alpha, beta)
if alpha < 0. and beta < 0.:
similarity = "iid"
average_data(num_glob_iters=num_glob_iters, algorithm=algorithm, dataset=dataset, similarity=similarity,
noise=noise, times=times, number=str(number), dp=dp, sigma_gaussian=sigma_gaussian,
local_updates=local_updates, sample_ratio=sample_ratio, user_ratio=user_ratio, model_name=model[1])
average_norms(num_glob_iters=num_glob_iters, algorithm=algorithm, dataset=dataset, similarity=similarity,
noise=noise, times=times, number=str(number), dp=dp, sigma_gaussian=sigma_gaussian,
local_updates=local_updates, sample_ratio=sample_ratio,user_ratio=user_ratio, model_name=model[1])
def simulate_cross_validation(dataset, algorithm, model, dim_input, dim_pca, dim_output, nb_users, nb_samples,
sample_ratio, user_ratio, weight_decay, local_learning_rate, max_norm, local_updates,
noise, times, dp, sigma_gaussian, similarity=None, alpha=0., beta=0., number=0,
num_glob_iters=400, nb_fold=5):
users_per_round = int(nb_users * user_ratio)
L = weight_decay
print("=" * 80)
print("Summary of training process:")
print(f"Algorithm: {algorithm}")
if dp == "Gaussian":
print(f"Differential Privacy : Gaussian Mechanism with sigma_g={sigma_gaussian}")
else:
print(f"Noise free version")
print(f"Subset of users : {users_per_round if users_per_round else 'all users'}")
print(f"Number of local updates : {local_updates}")
print(f"Number of communication rounds : {num_glob_iters}")
print(f"Dataset : {dataset}")
if similarity is not None:
print(f"Data Similarity : {similarity}")
else:
print(f"Data Similarity : {(alpha, beta)}")
print(f"Local Model : {model}")
print("=" * 80)
for k_fold in np.arange(nb_fold):
print("----------CROSS VALIDATION: {}/{} ".format(k_fold + 1, nb_fold))
for i in range(times):
torch.manual_seed(0) # for initialisation of the models
use_cuda = torch.cuda.is_available()
if use_cuda:
print("Using GPU")
print("---------------Running time:------------", i)
# Generate model
if model == "mclr": # for Femnist, MNIST, Logistic datasets
model = MclrLogistic(input_dim=dim_input, output_dim=dim_output), model
add_hooks(model[0])
if model == "NN1": # for Femnist, MNIST datasets
model = NN1(input_dim=dim_input, output_dim=dim_output), model
add_hooks(model[0])
if model == "NN1_PCA": # for Femnist, MNIST datasets
model = NN1_PCA(input_dim=dim_pca, output_dim=dim_output), model
add_hooks(model[0])
if model == "CNN": # for CIFAR-10 dataset
model = CNN(output_dim=dim_output), model
add_hooks(model[0])
# select algorithm
if algorithm == "FedAvg":
server = FedAvg(dataset, algorithm, model, nb_users, nb_samples, user_ratio, sample_ratio, L,
local_learning_rate, max_norm, num_glob_iters, local_updates, users_per_round,
similarity, noise, i, dp, sigma_gaussian, alpha, beta, number, dim_pca, use_cuda,
k_fold=k_fold, nb_fold=nb_fold)
elif algorithm == "SCAFFOLD":
server = SCAFFOLD(dataset, algorithm, model, nb_users, nb_samples, user_ratio, sample_ratio, L,
local_learning_rate, max_norm, num_glob_iters, local_updates, users_per_round,
similarity, noise, i, dp, sigma_gaussian, alpha, beta, number, dim_pca, use_cuda,
warm_start=False,
k_fold=k_fold, nb_fold=nb_fold)
server.train()
# Average results
if similarity is None:
similarity = (alpha, beta)
if alpha < 0. and beta < 0.:
similarity = "iid"
average_data(num_glob_iters=num_glob_iters, algorithm=algorithm, dataset=dataset,
similarity=similarity, noise=noise, times=times, number=str(number), dp=dp,
sigma_gaussian=sigma_gaussian, local_updates=local_updates, sample_ratio=sample_ratio,
user_ratio=user_ratio,
cross_validation=True, k_fold=k_fold, nb_fold=nb_fold, local_learning_rate=local_learning_rate,
model_name=model[1])