forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultipleKnapsackSat.java
137 lines (126 loc) · 4.66 KB
/
MultipleKnapsackSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
package com.google.ortools.sat.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
// [END import]
/** Sample showing how to solve a multiple knapsack problem. */
public class MultipleKnapsackSat {
// [START data]
static class DataModel {
int[] items = new int[] {48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36};
int[] values = new int[] {10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25};
int[] binCapacities = new int[] {100, 100, 100, 100, 100};
int numItems = items.length;
int numBins = 5;
}
// [END data]
// [START solution_printer]
static void printSolution(
DataModel data, CpSolver solver, IntVar[][] x, IntVar[] load, IntVar[] value) {
System.out.printf("Optimal objective value: %f%n", solver.objectiveValue());
System.out.println();
long packedWeight = 0;
long packedValue = 0;
for (int b = 0; b < data.numBins; ++b) {
System.out.println("Bin " + b);
for (int i = 0; i < data.numItems; ++i) {
if (solver.value(x[i][b]) > 0) {
System.out.println(
"Item " + i + " - Weight: " + data.items[i] + " Value: " + data.values[i]);
}
}
System.out.println("Packed bin weight: " + solver.value(load[b]));
packedWeight = packedWeight + solver.value(load[b]);
System.out.println("Packed bin value: " + solver.value(value[b]) + "\n");
packedValue = packedValue + solver.value(value[b]);
}
System.out.println("Total packed weight: " + packedWeight);
System.out.println("Total packed value: " + packedValue);
}
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Instantiate the data problem.
// [START data]
final DataModel data = new DataModel();
// [END data]
int totalValue = 0;
for (int i = 0; i < data.numItems; ++i) {
totalValue = totalValue + data.values[i];
}
// [START model]
CpModel model = new CpModel();
// [END model]
// [START variables]
IntVar[][] x = new IntVar[data.numItems][data.numBins];
for (int i = 0; i < data.numItems; ++i) {
for (int b = 0; b < data.numBins; ++b) {
x[i][b] = model.newIntVar(0, 1, "x_" + i + "_" + b);
}
}
// Main variables.
// Load and value variables.
IntVar[] load = new IntVar[data.numBins];
IntVar[] value = new IntVar[data.numBins];
for (int b = 0; b < data.numBins; ++b) {
load[b] = model.newIntVar(0, data.binCapacities[b], "load_" + b);
value[b] = model.newIntVar(0, totalValue, "value_" + b);
}
// Links load and value with x.
int[] sizes = new int[data.numItems];
for (int i = 0; i < data.numItems; ++i) {
sizes[i] = data.items[i];
}
for (int b = 0; b < data.numBins; ++b) {
IntVar[] vars = new IntVar[data.numItems];
for (int i = 0; i < data.numItems; ++i) {
vars[i] = x[i][b];
}
model.addEquality(LinearExpr.scalProd(vars, data.items), load[b]);
model.addEquality(LinearExpr.scalProd(vars, data.values), value[b]);
}
// [END variables]
// [START constraints]
// Each item can be in at most one bin.
// Place all items.
for (int i = 0; i < data.numItems; ++i) {
IntVar[] vars = new IntVar[data.numBins];
for (int b = 0; b < data.numBins; ++b) {
vars[b] = x[i][b];
}
model.addLessOrEqual(LinearExpr.sum(vars), 1);
}
// [END constraints]
// Maximize sum of load.
// [START objective]
model.maximize(LinearExpr.sum(value));
// [END objective]
// [START solve]
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
// [END solve]
// [START print_solution]
System.out.println("Solve status: " + status);
if (status == CpSolverStatus.OPTIMAL) {
printSolution(data, solver, x, load, value);
}
// [END print_solution]
}
private MultipleKnapsackSat() {}
}