forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinPackingProblemSat.java
111 lines (98 loc) · 3.74 KB
/
BinPackingProblemSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
/** Solves a bin packing problem with the CP-SAT solver. */
public class BinPackingProblemSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Data.
int binCapacity = 100;
int slackCapacity = 20;
int numBins = 5;
int[][] items = new int[][] {{20, 6}, {15, 6}, {30, 4}, {45, 3}};
int numItems = items.length;
// Model.
CpModel model = new CpModel();
// Main variables.
IntVar[][] x = new IntVar[numItems][numBins];
for (int i = 0; i < numItems; ++i) {
int numCopies = items[i][1];
for (int b = 0; b < numBins; ++b) {
x[i][b] = model.newIntVar(0, numCopies, "x_" + i + "_" + b);
}
}
// Load variables.
IntVar[] load = new IntVar[numBins];
for (int b = 0; b < numBins; ++b) {
load[b] = model.newIntVar(0, binCapacity, "load_" + b);
}
// Slack variables.
IntVar[] slacks = new IntVar[numBins];
for (int b = 0; b < numBins; ++b) {
slacks[b] = model.newBoolVar("slack_" + b);
}
// Links load and x.
int[] sizes = new int[numItems];
for (int i = 0; i < numItems; ++i) {
sizes[i] = items[i][0];
}
for (int b = 0; b < numBins; ++b) {
IntVar[] vars = new IntVar[numItems];
for (int i = 0; i < numItems; ++i) {
vars[i] = x[i][b];
}
model.addEquality(LinearExpr.scalProd(vars, sizes), load[b]);
}
// Place all items.
for (int i = 0; i < numItems; ++i) {
IntVar[] vars = new IntVar[numBins];
for (int b = 0; b < numBins; ++b) {
vars[b] = x[i][b];
}
model.addEquality(LinearExpr.sum(vars), items[i][1]);
}
// Links load and slack.
int safeCapacity = binCapacity - slackCapacity;
for (int b = 0; b < numBins; ++b) {
// slack[b] => load[b] <= safeCapacity.
model.addLessOrEqual(load[b], safeCapacity).onlyEnforceIf(slacks[b]);
// not(slack[b]) => load[b] > safeCapacity.
model.addGreaterOrEqual(load[b], safeCapacity + 1).onlyEnforceIf(slacks[b].not());
}
// Maximize sum of slacks.
model.maximize(LinearExpr.sum(slacks));
// Solves and prints out the solution.
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
System.out.println("Solve status: " + status);
if (status == CpSolverStatus.OPTIMAL) {
System.out.printf("Optimal objective value: %f%n", solver.objectiveValue());
for (int b = 0; b < numBins; ++b) {
System.out.printf("load_%d = %d%n", b, solver.value(load[b]));
for (int i = 0; i < numItems; ++i) {
System.out.printf(" item_%d_%d = %d%n", i, b, solver.value(x[i][b]));
}
}
}
System.out.println("Statistics");
System.out.println(" - conflicts : " + solver.numConflicts());
System.out.println(" - branches : " + solver.numBranches());
System.out.println(" - wall time : " + solver.wallTime() + " s");
}
}