forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssumptionsSampleSat.java
71 lines (63 loc) · 2.25 KB
/
AssumptionsSampleSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// Copyright 2021 Xiang Chen
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
package com.google.ortools.sat.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.Literal;
// [END import]
/** Minimal CP-SAT example to showcase assumptions. */
public class AssumptionsSampleSat {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Create the model.
// [START model]
CpModel model = new CpModel();
// [END model]
// Create the variables.
// [START variables]
IntVar x = model.newIntVar(0, 10, "x");
IntVar y = model.newIntVar(0, 10, "y");
IntVar z = model.newIntVar(0, 10, "z");
Literal a = model.newBoolVar("a");
Literal b = model.newBoolVar("b");
Literal c = model.newBoolVar("c");
// [END variables]
// Creates the constraints.
// [START constraints]
model.addGreaterThan(x, y).onlyEnforceIf(a);
model.addGreaterThan(y, z).onlyEnforceIf(b);
model.addGreaterThan(z, x).onlyEnforceIf(c);
// [END constraints]
// Add assumptions
model.addAssumptions(new Literal[] {a, b, c});
// Create a solver and solve the model.
// [START solve]
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem is infeasible.
if (status == CpSolverStatus.INFEASIBLE) {
System.out.println(solver.sufficientAssumptionsForInfeasibility());
}
// [END print_solution]
}
private AssumptionsSampleSat() {}
}
// [END program]