forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshift_scheduling_sat.py
425 lines (369 loc) · 15.9 KB
/
shift_scheduling_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Creates a shift scheduling problem and solves it."""
from absl import app
from absl import flags
from ortools.sat.python import cp_model
from google.protobuf import text_format
FLAGS = flags.FLAGS
flags.DEFINE_string('output_proto', '',
'Output file to write the cp_model proto to.')
flags.DEFINE_string('params', 'max_time_in_seconds:10.0',
'Sat solver parameters.')
def negated_bounded_span(works, start, length):
"""Filters an isolated sub-sequence of variables assined to True.
Extract the span of Boolean variables [start, start + length), negate them,
and if there is variables to the left/right of this span, surround the span by
them in non negated form.
Args:
works: a list of variables to extract the span from.
start: the start to the span.
length: the length of the span.
Returns:
a list of variables which conjunction will be false if the sub-list is
assigned to True, and correctly bounded by variables assigned to False,
or by the start or end of works.
"""
sequence = []
# Left border (start of works, or works[start - 1])
if start > 0:
sequence.append(works[start - 1])
for i in range(length):
sequence.append(works[start + i].Not())
# Right border (end of works or works[start + length])
if start + length < len(works):
sequence.append(works[start + length])
return sequence
def add_soft_sequence_constraint(model, works, hard_min, soft_min, min_cost,
soft_max, hard_max, max_cost, prefix):
"""Sequence constraint on true variables with soft and hard bounds.
This constraint look at every maximal contiguous sequence of variables
assigned to true. If forbids sequence of length < hard_min or > hard_max.
Then it creates penalty terms if the length is < soft_min or > soft_max.
Args:
model: the sequence constraint is built on this model.
works: a list of Boolean variables.
hard_min: any sequence of true variables must have a length of at least
hard_min.
soft_min: any sequence should have a length of at least soft_min, or a
linear penalty on the delta will be added to the objective.
min_cost: the coefficient of the linear penalty if the length is less than
soft_min.
soft_max: any sequence should have a length of at most soft_max, or a linear
penalty on the delta will be added to the objective.
hard_max: any sequence of true variables must have a length of at most
hard_max.
max_cost: the coefficient of the linear penalty if the length is more than
soft_max.
prefix: a base name for penalty literals.
Returns:
a tuple (variables_list, coefficient_list) containing the different
penalties created by the sequence constraint.
"""
cost_literals = []
cost_coefficients = []
# Forbid sequences that are too short.
for length in range(1, hard_min):
for start in range(len(works) - length - 1):
model.AddBoolOr(negated_bounded_span(works, start, length))
# Penalize sequences that are below the soft limit.
if min_cost > 0:
for length in range(hard_min, soft_min):
for start in range(len(works) - length - 1):
span = negated_bounded_span(works, start, length)
name = ': under_span(start=%i, length=%i)' % (start, length)
lit = model.NewBoolVar(prefix + name)
span.append(lit)
model.AddBoolOr(span)
cost_literals.append(lit)
# We filter exactly the sequence with a short length.
# The penalty is proportional to the delta with soft_min.
cost_coefficients.append(min_cost * (soft_min - length))
# Penalize sequences that are above the soft limit.
if max_cost > 0:
for length in range(soft_max + 1, hard_max + 1):
for start in range(len(works) - length - 1):
span = negated_bounded_span(works, start, length)
name = ': over_span(start=%i, length=%i)' % (start, length)
lit = model.NewBoolVar(prefix + name)
span.append(lit)
model.AddBoolOr(span)
cost_literals.append(lit)
# Cost paid is max_cost * excess length.
cost_coefficients.append(max_cost * (length - soft_max))
# Just forbid any sequence of true variables with length hard_max + 1
for start in range(len(works) - hard_max):
model.AddBoolOr(
[works[i].Not() for i in range(start, start + hard_max + 1)])
return cost_literals, cost_coefficients
def add_soft_sum_constraint(model, works, hard_min, soft_min, min_cost,
soft_max, hard_max, max_cost, prefix):
"""Sum constraint with soft and hard bounds.
This constraint counts the variables assigned to true from works.
If forbids sum < hard_min or > hard_max.
Then it creates penalty terms if the sum is < soft_min or > soft_max.
Args:
model: the sequence constraint is built on this model.
works: a list of Boolean variables.
hard_min: any sequence of true variables must have a sum of at least
hard_min.
soft_min: any sequence should have a sum of at least soft_min, or a linear
penalty on the delta will be added to the objective.
min_cost: the coefficient of the linear penalty if the sum is less than
soft_min.
soft_max: any sequence should have a sum of at most soft_max, or a linear
penalty on the delta will be added to the objective.
hard_max: any sequence of true variables must have a sum of at most
hard_max.
max_cost: the coefficient of the linear penalty if the sum is more than
soft_max.
prefix: a base name for penalty variables.
Returns:
a tuple (variables_list, coefficient_list) containing the different
penalties created by the sequence constraint.
"""
cost_variables = []
cost_coefficients = []
sum_var = model.NewIntVar(hard_min, hard_max, '')
# This adds the hard constraints on the sum.
model.Add(sum_var == sum(works))
# Penalize sums below the soft_min target.
if soft_min > hard_min and min_cost > 0:
delta = model.NewIntVar(-len(works), len(works), '')
model.Add(delta == soft_min - sum_var)
# TODO(user): Compare efficiency with only excess >= soft_min - sum_var.
excess = model.NewIntVar(0, 7, prefix + ': under_sum')
model.AddMaxEquality(excess, [delta, 0])
cost_variables.append(excess)
cost_coefficients.append(min_cost)
# Penalize sums above the soft_max target.
if soft_max < hard_max and max_cost > 0:
delta = model.NewIntVar(-7, 7, '')
model.Add(delta == sum_var - soft_max)
excess = model.NewIntVar(0, 7, prefix + ': over_sum')
model.AddMaxEquality(excess, [delta, 0])
cost_variables.append(excess)
cost_coefficients.append(max_cost)
return cost_variables, cost_coefficients
def solve_shift_scheduling(params, output_proto):
"""Solves the shift scheduling problem."""
# Data
num_employees = 8
num_weeks = 3
shifts = ['O', 'M', 'A', 'N']
# Fixed assignment: (employee, shift, day).
# This fixes the first 2 days of the schedule.
fixed_assignments = [
(0, 0, 0),
(1, 0, 0),
(2, 1, 0),
(3, 1, 0),
(4, 2, 0),
(5, 2, 0),
(6, 2, 3),
(7, 3, 0),
(0, 1, 1),
(1, 1, 1),
(2, 2, 1),
(3, 2, 1),
(4, 2, 1),
(5, 0, 1),
(6, 0, 1),
(7, 3, 1),
]
# Request: (employee, shift, day, weight)
# A negative weight indicates that the employee desire this assignment.
requests = [
# Employee 3 wants the first Saturday off.
(3, 0, 5, -2),
# Employee 5 wants a night shift on the second Thursday.
(5, 3, 10, -2),
# Employee 2 does not want a night shift on the third Friday.
(2, 3, 4, 4)
]
# Shift constraints on continuous sequence :
# (shift, hard_min, soft_min, min_penalty,
# soft_max, hard_max, max_penalty)
shift_constraints = [
# One or two consecutive days of rest, this is a hard constraint.
(0, 1, 1, 0, 2, 2, 0),
# betweem 2 and 3 consecutive days of night shifts, 1 and 4 are
# possible but penalized.
(3, 1, 2, 20, 3, 4, 5),
]
# Weekly sum constraints on shifts days:
# (shift, hard_min, soft_min, min_penalty,
# soft_max, hard_max, max_penalty)
weekly_sum_constraints = [
# Constraints on rests per week.
(0, 1, 2, 7, 2, 3, 4),
# At least 1 night shift per week (penalized). At most 4 (hard).
(3, 0, 1, 3, 4, 4, 0),
]
# Penalized transitions:
# (previous_shift, next_shift, penalty (0 means forbidden))
penalized_transitions = [
# Afternoon to night has a penalty of 4.
(2, 3, 4),
# Night to morning is forbidden.
(3, 1, 0),
]
# daily demands for work shifts (morning, afternon, night) for each day
# of the week starting on Monday.
weekly_cover_demands = [
(2, 3, 1), # Monday
(2, 3, 1), # Tuesday
(2, 2, 2), # Wednesday
(2, 3, 1), # Thursday
(2, 2, 2), # Friday
(1, 2, 3), # Saturday
(1, 3, 1), # Sunday
]
# Penalty for exceeding the cover constraint per shift type.
excess_cover_penalties = (2, 2, 5)
num_days = num_weeks * 7
num_shifts = len(shifts)
model = cp_model.CpModel()
work = {}
for e in range(num_employees):
for s in range(num_shifts):
for d in range(num_days):
work[e, s, d] = model.NewBoolVar('work%i_%i_%i' % (e, s, d))
# Linear terms of the objective in a minimization context.
obj_int_vars = []
obj_int_coeffs = []
obj_bool_vars = []
obj_bool_coeffs = []
# Exactly one shift per day.
for e in range(num_employees):
for d in range(num_days):
model.Add(sum(work[e, s, d] for s in range(num_shifts)) == 1)
# Fixed assignments.
for e, s, d in fixed_assignments:
model.Add(work[e, s, d] == 1)
# Employee requests
for e, s, d, w in requests:
obj_bool_vars.append(work[e, s, d])
obj_bool_coeffs.append(w)
# Shift constraints
for ct in shift_constraints:
shift, hard_min, soft_min, min_cost, soft_max, hard_max, max_cost = ct
for e in range(num_employees):
works = [work[e, shift, d] for d in range(num_days)]
variables, coeffs = add_soft_sequence_constraint(
model, works, hard_min, soft_min, min_cost, soft_max, hard_max,
max_cost,
'shift_constraint(employee %i, shift %i)' % (e, shift))
obj_bool_vars.extend(variables)
obj_bool_coeffs.extend(coeffs)
# Weekly sum constraints
for ct in weekly_sum_constraints:
shift, hard_min, soft_min, min_cost, soft_max, hard_max, max_cost = ct
for e in range(num_employees):
for w in range(num_weeks):
works = [work[e, shift, d + w * 7] for d in range(7)]
variables, coeffs = add_soft_sum_constraint(
model, works, hard_min, soft_min, min_cost, soft_max,
hard_max, max_cost,
'weekly_sum_constraint(employee %i, shift %i, week %i)' %
(e, shift, w))
obj_int_vars.extend(variables)
obj_int_coeffs.extend(coeffs)
# Penalized transitions
for previous_shift, next_shift, cost in penalized_transitions:
for e in range(num_employees):
for d in range(num_days - 1):
transition = [
work[e, previous_shift, d].Not(), work[e, next_shift,
d + 1].Not()
]
if cost == 0:
model.AddBoolOr(transition)
else:
trans_var = model.NewBoolVar(
'transition (employee=%i, day=%i)' % (e, d))
transition.append(trans_var)
model.AddBoolOr(transition)
obj_bool_vars.append(trans_var)
obj_bool_coeffs.append(cost)
# Cover constraints
for s in range(1, num_shifts):
for w in range(num_weeks):
for d in range(7):
works = [work[e, s, w * 7 + d] for e in range(num_employees)]
# Ignore Off shift.
min_demand = weekly_cover_demands[d][s - 1]
worked = model.NewIntVar(min_demand, num_employees, '')
model.Add(worked == sum(works))
over_penalty = excess_cover_penalties[s - 1]
if over_penalty > 0:
name = 'excess_demand(shift=%i, week=%i, day=%i)' % (s, w,
d)
excess = model.NewIntVar(0, num_employees - min_demand,
name)
model.Add(excess == worked - min_demand)
obj_int_vars.append(excess)
obj_int_coeffs.append(over_penalty)
# Objective
model.Minimize(
sum(obj_bool_vars[i] * obj_bool_coeffs[i]
for i in range(len(obj_bool_vars))) +
sum(obj_int_vars[i] * obj_int_coeffs[i]
for i in range(len(obj_int_vars))))
if output_proto:
print('Writing proto to %s' % output_proto)
with open(output_proto, 'w') as text_file:
text_file.write(str(model))
# Solve the model.
solver = cp_model.CpSolver()
if params:
text_format.Parse(params, solver.parameters)
solution_printer = cp_model.ObjectiveSolutionPrinter()
status = solver.SolveWithSolutionCallback(model, solution_printer)
# Print solution.
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print()
header = ' '
for w in range(num_weeks):
header += 'M T W T F S S '
print(header)
for e in range(num_employees):
schedule = ''
for d in range(num_days):
for s in range(num_shifts):
if solver.BooleanValue(work[e, s, d]):
schedule += shifts[s] + ' '
print('worker %i: %s' % (e, schedule))
print()
print('Penalties:')
for i, var in enumerate(obj_bool_vars):
if solver.BooleanValue(var):
penalty = obj_bool_coeffs[i]
if penalty > 0:
print(' %s violated, penalty=%i' % (var.Name(), penalty))
else:
print(' %s fulfilled, gain=%i' % (var.Name(), -penalty))
for i, var in enumerate(obj_int_vars):
if solver.Value(var) > 0:
print(' %s violated by %i, linear penalty=%i' %
(var.Name(), solver.Value(var), obj_int_coeffs[i]))
print()
print('Statistics')
print(' - status : %s' % solver.StatusName(status))
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f s' % solver.WallTime())
def main(_):
solve_shift_scheduling(FLAGS.params, FLAGS.output_proto)
if __name__ == '__main__':
app.run(main)