forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrcpsp_sat.py
314 lines (267 loc) · 12.6 KB
/
rcpsp_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sat based solver for the RCPSP problems (see rcpsp.proto)."""
import collections
from absl import app
from absl import flags
from google.protobuf import text_format
from ortools.data import pywraprcpsp
from ortools.sat.python import cp_model
FLAGS = flags.FLAGS
flags.DEFINE_string('input', '', 'Input file to parse and solve.')
flags.DEFINE_string('output_proto', '',
'Output file to write the cp_model proto to.')
flags.DEFINE_string('params', '', 'Sat solver parameters.')
flags.DEFINE_bool('use_interval_makespan', True,
'Whether we encode the makespan using an interval or not.')
flags.DEFINE_integer('horizon', -1, 'Force horizon.')
flags.DEFINE_bool(
'use_main_interval_for_tasks', True,
'Creates a main interval for each task, and use it in precedences')
def PrintProblemStatistics(problem):
"""Display various statistics on the problem."""
# Determine problem type.
problem_type = ('Resource Investment Problem'
if problem.is_resource_investment else 'RCPSP')
num_resources = len(problem.resources)
num_tasks = len(problem.tasks) - 2 # 2 sentinels.
tasks_with_alternatives = 0
variable_duration_tasks = 0
tasks_with_delay = 0
for task in problem.tasks:
if len(task.recipes) > 1:
tasks_with_alternatives += 1
duration_0 = task.recipes[0].duration
for recipe in task.recipes:
if recipe.duration != duration_0:
variable_duration_tasks += 1
break
if task.successor_delays:
tasks_with_delay += 1
if problem.is_rcpsp_max:
problem_type += '/Max delay'
# We print 2 less tasks as these are sentinel tasks that are not counted in
# the description of the rcpsp models.
if problem.is_consumer_producer:
print(f'Solving {problem_type} with:')
print(f' - {num_resources} reservoir resources')
print(f' - {num_tasks} tasks')
else:
print(f'Solving {problem_type} with:')
print(f' - {num_resources} renewable resources')
print(f' - {num_tasks} tasks')
if tasks_with_alternatives:
print(
f' - {tasks_with_alternatives} tasks with alternative resources'
)
if variable_duration_tasks:
print(
f' - {variable_duration_tasks} tasks with variable durations'
)
if tasks_with_delay:
print(f' - {tasks_with_delay} tasks with successor delays')
def SolveRcpsp(problem, proto_file, params):
"""Parse and solve a given RCPSP problem in proto format."""
PrintProblemStatistics(problem)
# Create the model.
model = cp_model.CpModel()
num_tasks = len(problem.tasks)
num_resources = len(problem.resources)
all_active_tasks = range(1, num_tasks - 1)
all_resources = range(num_resources)
horizon = problem.deadline if problem.deadline != -1 else problem.horizon
if FLAGS.horizon > 0:
horizon = FLAGS.horizon
if horizon == -1: # Naive computation.
horizon = sum(max(r.duration for r in t.recipes) for t in problem.tasks)
if problem.is_rcpsp_max:
for t in problem.tasks:
for sd in t.successor_delays:
for rd in sd.recipe_delays:
for d in rd.min_delays:
horizon += abs(d)
print(f' - horizon = {horizon}')
# Containers used to build resources.
intervals_per_resource = collections.defaultdict(list)
demands_per_resource = collections.defaultdict(list)
presences_per_resource = collections.defaultdict(list)
starts_per_resource = collections.defaultdict(list)
# Starts and ends for each task (shared between all alternatives)
task_starts = {}
task_ends = {}
# Containers for per-recipe per task alternatives variables.
presences_per_task = collections.defaultdict(list)
durations_per_task = collections.defaultdict(list)
one = model.NewConstant(1)
# Create tasks variables.
for t in all_active_tasks:
task = problem.tasks[t]
if len(task.recipes) == 1:
# Create main and unique interval.
recipe = task.recipes[0]
task_starts[t] = model.NewIntVar(0, horizon, f'start_of_task_{t}')
task_ends[t] = model.NewIntVar(0, horizon, f'end_of_task_{t}')
interval = model.NewIntervalVar(task_starts[t], recipe.duration,
task_ends[t], f'interval_{t}')
# Store as a single alternative for later.
presences_per_task[t].append(one)
durations_per_task[t].append(recipe.duration)
# Register the interval in resources specified by the demands.
for i in range(len(recipe.demands)):
demand = recipe.demands[i]
res = recipe.resources[i]
demands_per_resource[res].append(demand)
if problem.resources[res].renewable:
intervals_per_resource[res].append(interval)
else:
starts_per_resource[res].append(task_starts[t])
presences_per_resource[res].append(1)
else: # Multiple alternative recipes.
all_recipes = range(len(task.recipes))
start = model.NewIntVar(0, horizon, f'start_of_task_{t}')
end = model.NewIntVar(0, horizon, f'end_of_task_{t}')
# Store for precedences.
task_starts[t] = start
task_ends[t] = end
# Create one optional interval per recipe.
for r in all_recipes:
recipe = task.recipes[r]
is_present = model.NewBoolVar(f'is_present_{t}_{r}')
interval = model.NewOptionalIntervalVar(start, recipe.duration,
end, is_present,
f'interval_{t}_{r}')
# Store alternative variables.
presences_per_task[t].append(is_present)
durations_per_task[t].append(recipe.duration)
# Register the interval in resources specified by the demands.
for i in range(len(recipe.demands)):
demand = recipe.demands[i]
res = recipe.resources[i]
demands_per_resource[res].append(demand)
if problem.resources[res].renewable:
intervals_per_resource[res].append(interval)
else:
starts_per_resource[res].append(start)
presences_per_resource[res].append(is_present)
# Exactly one alternative must be performed.
model.Add(sum(presences_per_task[t]) == 1)
# linear encoding of the duration.
min_duration = min(durations_per_task[t])
max_duration = max(durations_per_task[t])
shifted = [x - min_duration for x in durations_per_task[t]]
duration = model.NewIntVar(min_duration, max_duration,
f'duration_of_task_{t}')
model.Add(
duration == min_duration +
cp_model.LinearExpr.ScalProd(presences_per_task[t], shifted))
# We do not create a 'main' interval. Instead, we link start, end, and
# duration.
model.Add(start + duration == end)
# Create makespan variable
makespan = model.NewIntVar(0, horizon, 'makespan')
interval_makespan = model.NewIntervalVar(
makespan, model.NewIntVar(1, horizon, 'interval_makespan_size'),
model.NewConstant(horizon + 1), 'interval_makespan')
# Add precedences.
if problem.is_rcpsp_max:
# In RCPSP/Max problem, precedences are given and max delay (possible
# negative) between the starts of two tasks.
for task_id in all_active_tasks:
task = problem.tasks[task_id]
num_modes = len(task.recipes)
for successor_index in range(len(task.successors)):
next_id = task.successors[successor_index]
delay_matrix = task.successor_delays[successor_index]
num_next_modes = len(problem.tasks[next_id].recipes)
for m1 in range(num_modes):
s1 = task_starts[task_id]
p1 = presences_per_task[task_id][m1]
if next_id == num_tasks - 1:
delay = delay_matrix.recipe_delays[m1].min_delays[0]
model.Add(s1 + delay <= makespan).OnlyEnforceIf(p1)
else:
for m2 in range(num_next_modes):
delay = delay_matrix.recipe_delays[m1].min_delays[
m2]
s2 = task_starts[next_id]
p2 = presences_per_task[next_id][m2]
model.Add(s1 + delay <= s2).OnlyEnforceIf([p1, p2])
else:
# Normal dependencies (task ends before the start of successors).
for t in all_active_tasks:
for n in problem.tasks[t].successors:
if n == num_tasks - 1:
model.Add(task_ends[t] <= makespan)
else:
model.Add(task_ends[t] <= task_starts[n])
# Containers for resource investment problems.
capacities = [] # Capacity variables for all resources.
max_cost = 0 # Upper bound on the investment cost.
# Create resources.
for r in all_resources:
resource = problem.resources[r]
c = resource.max_capacity
if c == -1:
c = sum(demands_per_resource[r])
if problem.is_resource_investment:
# RIP problems have only renewable resources.
capacity = model.NewIntVar(0, c, f'capacity_of_{r}')
model.AddCumulative(intervals_per_resource[r],
demands_per_resource[r], capacity)
capacities.append(capacity)
max_cost += c * resource.unit_cost
elif resource.renewable:
if intervals_per_resource[r]:
if FLAGS.use_interval_makespan:
model.AddCumulative(
intervals_per_resource[r] + [interval_makespan],
demands_per_resource[r] + [c], c)
else:
model.AddCumulative(intervals_per_resource[r],
demands_per_resource[r], c)
elif presences_per_resource[r]: # Non empty non renewable resource.
if problem.is_consumer_producer:
model.AddReservoirConstraint(starts_per_resource[r],
demands_per_resource[r],
resource.min_capacity,
resource.max_capacity)
else:
model.Add(
sum(presences_per_resource[r][i] *
demands_per_resource[r][i]
for i in range(len(presences_per_resource[r]))) <= c)
# Objective.
if problem.is_resource_investment:
objective = model.NewIntVar(0, max_cost, 'capacity_costs')
model.Add(objective == sum(problem.resources[i].unit_cost *
capacities[i]
for i in range(len(capacities))))
else:
objective = makespan
model.Minimize(objective)
if proto_file:
print(f'Writing proto to{proto_file}')
with open(proto_file, 'w') as text_file:
text_file.write(str(model))
# Solve model.
solver = cp_model.CpSolver()
if params:
text_format.Parse(params, solver.parameters)
solver.parameters.log_search_progress = True
solver.Solve(model)
def main(_):
rcpsp_parser = pywraprcpsp.RcpspParser()
rcpsp_parser.ParseFile(FLAGS.input)
SolveRcpsp(rcpsp_parser.Problem(), FLAGS.output_proto, FLAGS.params)
if __name__ == '__main__':
app.run(main)