forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyflow_example.py
80 lines (70 loc) · 3.11 KB
/
pyflow_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MaxFlow and MinCostFlow examples."""
from absl import app
from ortools.graph import pywrapgraph
def MaxFlow():
"""MaxFlow simple interface example."""
print('MaxFlow on a simple network.')
tails = [0, 0, 0, 0, 1, 2, 3, 3, 4]
heads = [1, 2, 3, 4, 3, 4, 4, 5, 5]
capacities = [5, 8, 5, 3, 4, 5, 6, 6, 4]
expected_total_flow = 10
max_flow = pywrapgraph.SimpleMaxFlow()
for i in range(0, len(tails)):
max_flow.AddArcWithCapacity(tails[i], heads[i], capacities[i])
if max_flow.Solve(0, 5) == max_flow.OPTIMAL:
print('Total flow', max_flow.OptimalFlow(), '/', expected_total_flow)
for i in range(max_flow.NumArcs()):
print('From source %d to target %d: %d / %d' %
(max_flow.Tail(i), max_flow.Head(i), max_flow.Flow(i),
max_flow.Capacity(i)))
print('Source side min-cut:', max_flow.GetSourceSideMinCut())
print('Sink side min-cut:', max_flow.GetSinkSideMinCut())
else:
print('There was an issue with the max flow input.')
def MinCostFlow():
"""MinCostFlow simple interface example.
Note that this example is actually a linear sum assignment example and will
be more efficiently solved with the pywrapgraph.LinearSumAssignement class.
"""
print('MinCostFlow on 4x4 matrix.')
num_sources = 4
num_targets = 4
costs = [[90, 75, 75, 80], [35, 85, 55, 65], [125, 95, 90, 105],
[45, 110, 95, 115]]
expected_cost = 275
min_cost_flow = pywrapgraph.SimpleMinCostFlow()
for source in range(0, num_sources):
for target in range(0, num_targets):
min_cost_flow.AddArcWithCapacityAndUnitCost(source,
num_sources + target, 1,
costs[source][target])
for node in range(0, num_sources):
min_cost_flow.SetNodeSupply(node, 1)
min_cost_flow.SetNodeSupply(num_sources + node, -1)
status = min_cost_flow.Solve()
if status == min_cost_flow.OPTIMAL:
print('Total flow', min_cost_flow.OptimalCost(), '/', expected_cost)
for i in range(0, min_cost_flow.NumArcs()):
if min_cost_flow.Flow(i) > 0:
print('From source %d to target %d: cost %d' %
(min_cost_flow.Tail(i), min_cost_flow.Head(i) -
num_sources, min_cost_flow.UnitCost(i)))
else:
print('There was an issue with the min cost flow input.')
def main(_):
MaxFlow()
MinCostFlow()
if __name__ == '__main__':
app.run(main)