forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgate_scheduling_sat.py
153 lines (129 loc) · 5.1 KB
/
gate_scheduling_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gate Scheduling problem.
We have a set of jobs to perform (duration, width).
We have two parallel machines that can perform this job.
One machine can only perform one job at a time.
At any point in time, the sum of the width of the two active jobs does not
exceed a max_width.
The objective is to minimize the max end time of all jobs.
"""
from absl import app
from ortools.sat.python import visualization
from ortools.sat.python import cp_model
def main(_):
"""Solves the gate scheduling problem."""
model = cp_model.CpModel()
jobs = [
[3, 3], # [duration, width]
[2, 5],
[1, 3],
[3, 7],
[7, 3],
[2, 2],
[2, 2],
[5, 5],
[10, 2],
[4, 3],
[2, 6],
[1, 2],
[6, 8],
[4, 5],
[3, 7]
]
max_width = 10
horizon = sum(t[0] for t in jobs)
num_jobs = len(jobs)
all_jobs = range(num_jobs)
intervals = []
intervals0 = []
intervals1 = []
performed = []
starts = []
ends = []
demands = []
for i in all_jobs:
# Create main interval.
start = model.NewIntVar(0, horizon, 'start_%i' % i)
duration = jobs[i][0]
end = model.NewIntVar(0, horizon, 'end_%i' % i)
interval = model.NewIntervalVar(start, duration, end, 'interval_%i' % i)
starts.append(start)
intervals.append(interval)
ends.append(end)
demands.append(jobs[i][1])
# Create an optional copy of interval to be executed on machine 0.
performed_on_m0 = model.NewBoolVar('perform_%i_on_m0' % i)
performed.append(performed_on_m0)
start0 = model.NewIntVar(0, horizon, 'start_%i_on_m0' % i)
end0 = model.NewIntVar(0, horizon, 'end_%i_on_m0' % i)
interval0 = model.NewOptionalIntervalVar(start0, duration, end0,
performed_on_m0,
'interval_%i_on_m0' % i)
intervals0.append(interval0)
# Create an optional copy of interval to be executed on machine 1.
start1 = model.NewIntVar(0, horizon, 'start_%i_on_m1' % i)
end1 = model.NewIntVar(0, horizon, 'end_%i_on_m1' % i)
interval1 = model.NewOptionalIntervalVar(start1, duration, end1,
performed_on_m0.Not(),
'interval_%i_on_m1' % i)
intervals1.append(interval1)
# We only propagate the constraint if the tasks is performed on the machine.
model.Add(start0 == start).OnlyEnforceIf(performed_on_m0)
model.Add(start1 == start).OnlyEnforceIf(performed_on_m0.Not())
# Width constraint (modeled as a cumulative)
model.AddCumulative(intervals, demands, max_width)
# Choose which machine to perform the jobs on.
model.AddNoOverlap(intervals0)
model.AddNoOverlap(intervals1)
# Objective variable.
makespan = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(makespan, ends)
model.Minimize(makespan)
# Symmetry breaking.
model.Add(performed[0] == 0)
# Solve model.
solver = cp_model.CpSolver()
solver.Solve(model)
# Output solution.
if visualization.RunFromIPython():
output = visualization.SvgWrapper(solver.ObjectiveValue(), max_width,
40.0)
output.AddTitle('Makespan = %i' % solver.ObjectiveValue())
color_manager = visualization.ColorManager()
color_manager.SeedRandomColor(0)
for i in all_jobs:
performed_machine = 1 - solver.Value(performed[i])
start = solver.Value(starts[i])
d_x = jobs[i][0]
d_y = jobs[i][1]
s_y = performed_machine * (max_width - d_y)
output.AddRectangle(start, s_y, d_x, d_y,
color_manager.RandomColor(), 'black', 'j%i' % i)
output.AddXScale()
output.AddYScale()
output.Display()
else:
print('Solution')
print(' - makespan = %i' % solver.ObjectiveValue())
for i in all_jobs:
performed_machine = 1 - solver.Value(performed[i])
start = solver.Value(starts[i])
print(' - Job %i starts at %i on machine %i' %
(i, start, performed_machine))
print('Statistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f s' % solver.WallTime())
if __name__ == '__main__':
app.run(main)