-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjust_5_is_bad.py
404 lines (350 loc) · 16.6 KB
/
just_5_is_bad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# This script demonstrates a fundamental design flaw in the variant of top-pruning where
# we add (at most) 5 edges per NNI and allow only the two NNIs at an edge using the
# choice map tree through the edge: there can be unobtainable edges and subsplits.
# I messed up the algorithm described in bito issue #440 at step 7. We cannot add the
# NNIs at the sister and parent edges of u->t', because those edges alreeady exist and
# their choice maps are set. There may be other mistakes...
class sdag:
"""A simple class for the topological structure and choice maps of an sDAG."""
def __init__(self, root_split):
self.root_split = root_split
self.edges = []
self.subsplits = [root_split]
self.taxon_set = root_split.left_clade.union(root_split.right_clade)
self.parent_choice = {}
self.sibling_choice = {}
self.left_child_choice = {}
self.right_child_choice = {}
def add_subsplit(self, the_subsplit):
"""
Adds the subsplit to this sdag, if the subsplit is not already present. Returns
the truth value of the subsplit being new to the sdag.
"""
if self.subsplit_exists(the_subsplit):
return False
else:
self.subsplits.append(the_subsplit)
return True
def add_edge(self, the_edge):
"""
Adds the edge to this sdag, if the edge is not already present. Returns the
truth value of the edge being new to the sdag.
"""
if self.edge_exists(the_edge):
return False
else:
self.edges.append(the_edge)
return True
def subsplit_exists(self, the_subsplit):
"""Is the subsplit in this sdag?"""
return the_subsplit in self.subsplits
def edge_exists(self, the_edge):
"""Is the edge in this sdag?"""
return the_edge in self.edges
def valid_nni_edge(self, the_edge):
"""
Is the the edge a valid edge to apply an NNI (i.e., neither leaf nor root)?
"""
return not (the_edge.is_leaf_edge() or the_edge.is_root_edge(self))
def set_choices_to_first_available(self):
"""
Initialize the choice maps for the edges of this sdag, using the first viable
edge in self.edges.
"""
for e in self.edges:
if e.is_root_edge(self):
self.parent_choice[e] = None
else:
parents = [parent for parent in self.edges if e.valid_parent(parent)]
self.parent_choice[e] = parents[0]
siblings = [sibling for sibling in self.edges if e.valid_sibling(sibling)]
self.sibling_choice[e] = siblings[0]
if e.is_leaf_edge():
self.left_child_choice[e] = None
self.right_child_choice[e] = None
else:
lefts = [child for child in self.edges if e.valid_left_child(child)]
rights = [child for child in self.edges if e.valid_right_child(child)]
self.left_child_choice[e] = lefts[0]
self.right_child_choice[e] = rights[0]
return None
def NNI_child_edge(self, the_edge, swap_right):
"""
Performs the NNI at the_edge of the choice map topology through the edge,
swapping the sibling edge with either the right or left child edge. The
resulting subsplits and edges are added to this sdag, if they do not already
exist. For edges that do not already exist, we set their choice maps on this
sdag.
Returned is a tuple of tuples, containing the 5 edges and truth values for
them being new.
"""
if not self.edge_exists(the_edge):
raise ValueError("The given edge is not in the sdag.")
if the_edge.is_leaf_edge():
raise ValueError("The given edge ends with a leaf node.")
if the_edge.is_root_edge(self):
raise ValueError("The given edge begins with a rootsplit")
swap_left = not swap_right
old_central = the_edge
old_parent = self.parent_choice[old_central]
old_sibling = self.sibling_choice[old_central]
old_left_child = self.left_child_choice[old_central]
old_right_child = self.right_child_choice[old_central]
old_parent_subsplit = old_central.parent_subsplit
old_child_subsplit = old_central.child_subsplit
X, Y = old_child_subsplit.left_clade, old_child_subsplit.right_clade
# Determine if the old parent subsplit is XY|Z or Z|XY.
old_child_subsplit_is_on_left = old_central.is_child_subsplit_on_left()
old_child_subsplit_is_on_right = not old_child_subsplit_is_on_left
if old_child_subsplit_is_on_left:
Z = old_parent_subsplit.right_clade
else:
Z = old_parent_subsplit.left_clade
if swap_right:
parent_subsplit = subsplit(X.union(Z), Y)
child_subsplit = subsplit(X, Z)
else:
# Determine if the new child subsplit is Y|Z or Z|Y
old_sibling_clade_goes_on_right = min(Y) < min(Z)
old_sibling_clade_goes_on_left = not old_sibling_clade_goes_on_right
parent_subsplit = subsplit(X, Y.union(Z))
child_subsplit = subsplit(Y, Z)
self.add_subsplit(parent_subsplit)
self.add_subsplit(child_subsplit)
parent = edge(old_parent.parent_subsplit, parent_subsplit)
central = edge(parent_subsplit, child_subsplit)
if swap_right:
sibling = edge(parent_subsplit, old_right_child.child_subsplit)
if old_child_subsplit_is_on_left:
left_child = edge(child_subsplit, old_left_child.child_subsplit)
right_child = edge(child_subsplit, old_sibling.child_subsplit)
else:
left_child = edge(child_subsplit, old_sibling.child_subsplit)
right_child = edge(child_subsplit, old_left_child.child_subsplit)
else:
sibling = edge(parent_subsplit, old_left_child.child_subsplit)
if old_sibling_clade_goes_on_left:
left_child = edge(child_subsplit, old_sibling.child_subsplit)
right_child = edge(child_subsplit, old_right_child.child_subsplit)
else:
left_child = edge(child_subsplit, old_right_child.child_subsplit)
right_child = edge(child_subsplit, old_sibling.child_subsplit)
parent_is_new = self.add_edge(parent)
central_is_new = self.add_edge(central)
sibling_is_new = self.add_edge(sibling)
left_is_new = self.add_edge(left_child)
right_is_new = self.add_edge(right_child)
if parent_is_new:
self.parent_choice[parent] = self.parent_choice[old_parent]
self.sibling_choice[parent] = self.sibling_choice[old_parent]
if swap_right or old_child_subsplit_is_on_right:
self.left_child_choice[parent] = central
self.right_child_choice[parent] = sibling
else:
self.left_child_choice[parent] = sibling
self.right_child_choice[parent] = central
if central_is_new:
self.parent_choice[central] = parent
self.sibling_choice[central] = sibling
self.left_child_choice[central] = left_child
self.right_child_choice[central] = right_child
if sibling_is_new:
self.parent_choice[sibling] = parent
self.sibling_choice[sibling] = central
pre_nni_edge = old_right_child if swap_right else old_left_child
self.left_child_choice[sibling] = self.left_child_choice[pre_nni_edge]
self.right_child_choice[sibling] = self.right_child_choice[pre_nni_edge]
if left_is_new:
self.parent_choice[left_child] = central
self.sibling_choice[left_child] = right_child
if swap_right and old_child_subsplit_is_on_left:
pre_nni_edge = old_left_child
elif swap_left and old_sibling_clade_goes_on_right:
pre_nni_edge = old_right_child
else:
pre_nni_edge = old_sibling
self.left_child_choice[left_child] = self.left_child_choice[pre_nni_edge]
self.right_child_choice[left_child] = self.right_child_choice[pre_nni_edge]
if right_is_new:
self.parent_choice[right_child] = central
self.sibling_choice[right_child] = left_child
if swap_right and old_child_subsplit_is_on_right:
pre_nni_edge = old_left_child
elif swap_left and old_sibling_clade_goes_on_left:
pre_nni_edge = old_right_child
else:
pre_nni_edge = old_sibling
self.left_child_choice[right_child] = self.left_child_choice[pre_nni_edge]
self.right_child_choice[right_child] = self.right_child_choice[pre_nni_edge]
return (
(parent, central, sibling, left_child, right_child),
(parent_is_new, central_is_new, sibling_is_new, left_is_new, right_is_new),
)
class edge:
"""A simple class for sdag edges as pairs of subsplits."""
def __init__(self, parent_subsplit, child_subsplit):
self.parent_subsplit = parent_subsplit
self.child_subsplit = child_subsplit
self.hash_value = hash(str(self))
def __eq__(self, other):
"""
Equality of edges is in terms of pairs of subsplits.
"""
return (
self.parent_subsplit == other.parent_subsplit
and self.child_subsplit == other.child_subsplit
)
def __str__(self):
return str(self.parent_subsplit) + " ---> " + str(self.child_subsplit)
def __hash__(self):
return self.hash_value
def is_leaf_edge(self):
"""Is the child subsplit of this edge a leaf node?"""
return self.child_subsplit.is_leaf_subsplit()
def is_root_edge(self, the_sdag):
"""Is the parent subsplit of this edge a rootsplit for the taxa of the_sdag?"""
return self.parent_subsplit.is_root_split(the_sdag)
def is_child_subsplit_on_left(self):
"""
Is the child subsplit of this edge bipartitioning the left subsplit clade of
the parent subsplit?
"""
return self.parent_subsplit.left_clade == self.child_subsplit.taxa
def is_child_subsplit_on_right(self):
"""
Is the child subsplit of this edge bipartitioning the right subsplit clade of
the parent subsplit?
"""
return self.parent_subsplit.right_clade == self.child_subsplit.taxa
def valid_parent(self, other):
"""Is the other edge a valid choice for parent edge of self?"""
return other.valid_child(self)
def valid_sibling(self, other):
"""Is the other edge a valid choice for sibling edge of self?"""
return (
self.parent_subsplit == other.parent_subsplit
and self.is_child_subsplit_on_left() == other.is_child_subsplit_on_right()
)
def valid_left_child(self, other):
"""Is the other edge a valid choice for left child edge of self?"""
return (
self.valid_child(other)
and self.child_subsplit.left_clade == other.child_subsplit.taxa
)
def valid_right_child(self, other):
"""Is the other edge a valid choice for right child edge of self?"""
return (
self.valid_child(other)
and self.child_subsplit.right_clade == other.child_subsplit.taxa
)
def valid_child(self, other):
"""Is the other edge a valid choice for child edge of self?"""
return self.child_subsplit == other.parent_subsplit
class subsplit:
"""A simple class for subsplits as pairs of sets of taxa, with an enforced order."""
def __init__(self, clade1, clade2):
"""Create a subsplit from clade1 and clade2, which should be sets of integers."""
if (len(clade1) + len(clade2) == 0) or len(clade1.intersection(clade2)) != 0:
raise ValueError("The clades do not form a subsplit.")
c1_first = len(clade2) == 0 or (len(clade1) != 0 and min(clade1) < min(clade2))
self.left_clade = clade1 if c1_first else clade2
self.right_clade = clade2 if c1_first else clade1
self.taxa = clade1.union(clade2)
def __eq__(self, other):
"""Equality of subsplits is equality of both clades."""
return (
self.left_clade == other.left_clade
and self.right_clade == other.right_clade
)
def __str__(self):
clade_string = lambda clade: ",".join(map(str, sorted(clade)))
return f"[{clade_string(self.left_clade)}|{clade_string(self.right_clade)}]"
def is_root_split(self, the_sdag):
"""Is this subsplit a rootsplit for the taxa of the_sdag?"""
return len(self.taxa) == len(the_sdag.taxon_set)
def is_leaf_subsplit(self):
"""Is this subsplit a leaf node?"""
return len(self.left_clade) == 1 and len(self.right_clade) == 0
def build_caterpillar(N):
"""
Returns the sdag constructed from the topology where 0 splits off first, then 1
splits off, then 2 splits off, ..., and lastly N-2 and N-1 split.
"""
parent_subsplit = subsplit({0}, set(range(1, N)))
the_sdag = sdag(parent_subsplit)
for i in range(N - 1):
left_subsplit = subsplit({i}, set())
right_subsplit = subsplit({i + 1}, set(range(i + 2, N)))
left_edge = edge(parent_subsplit, left_subsplit)
right_edge = edge(parent_subsplit, right_subsplit)
the_sdag.add_subsplit(left_subsplit)
the_sdag.add_subsplit(right_subsplit)
the_sdag.add_edge(left_edge)
the_sdag.add_edge(right_edge)
parent_subsplit = right_subsplit
return the_sdag
def check_sdag_from_caterpillar(N):
"""
This method constructs an sDAG from a caterpillar tree with N taxa, taking the taxon
0 as the outgroup for the rootsplit. NNIs are then repeatedly applied to this sDAG,
following the "just 5 edges" version of top-pruning. Unlike the actual top-pruning
algorithm, we do not rank and add NNIs by likelihood. Instead we add them in order
of a breadth first search. However, like top-pruning we allow only two NNIs per
sDAG edge and the NNIs are based on the choice maps at the edges. We check for
missing edges in the sDAG after applying all allowed NNIs.
"""
the_sdag = build_caterpillar(N)
the_sdag.set_choices_to_first_available()
edges_to_nni = [e for e in the_sdag.edges if the_sdag.valid_nni_edge(e)]
while len(edges_to_nni) != 0:
current_edge = edges_to_nni.pop(0)
for swap_right in (False, True):
edges, are_edges_new = the_sdag.NNI_child_edge(current_edge, swap_right)
for e, is_new in zip(edges, are_edges_new):
if is_new and the_sdag.valid_nni_edge(e):
edges_to_nni.append(e)
node_count = len(the_sdag.subsplits)
missing_node_count = max_node_count(N - 1) + 1 - node_count
edge_count = len(the_sdag.edges)
missing_edge_count = max_edge_count(N - 1) + 1 - edge_count
print(
f"The sdag has {node_count} nodes, including the rootsplit and leaf 0, missing "
+ f"{missing_node_count}.\nThe sdag has {edge_count} edges, including those "
+ f"from the rootsplit, missing {missing_edge_count}."
)
if missing_edge_count != 0:
print("A few of the missing edges are:")
find_missing_edges(the_sdag)
print()
def find_missing_edges(the_sdag, how_many=10):
"""
Prints the edges that are not in the_sdag, but are valid edges between subsplits in
the_sdag.
"""
count = 0
for parent in the_sdag.subsplits:
if not parent.is_leaf_subsplit():
for child in the_sdag.subsplits:
if child.taxa == parent.left_clade or child.taxa == parent.right_clade:
if not the_sdag.edge_exists(edge(parent, child)):
print(f"The sdag is missing the edge from {parent} to {child}.")
count += 1
if count == how_many:
return None
return None
def max_edge_count(N):
"""
Returns the maximum number of edges in an sDAG with N taxa, including edges from the
universal ancestor and edges to leaf nodes (bito style).
"""
return int(2 ** (N - 1) * (2**N + N + 4) - 3 * (3**N + 1) / 2 - N)
def max_node_count(N):
"""
Returns the maximum number of subsplits in an sDAG with N taxa, including the
universal ancestor and leaf nodes (bito style).
"""
return int(N + (3**N + 1) / 2 - 2**N + 1)
if __name__ == "__main__":
# Missing edges start at N=7, missing subsplits start at N=9.
for N in range(3, 10):
check_sdag_from_caterpillar(N)