-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathutils.py
117 lines (101 loc) · 3.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
from medpy.filter.binary import largest_connected_component
from skimage.exposure import rescale_intensity
from skimage.transform import resize
def dsc(y_pred, y_true, lcc=True):
if lcc and np.any(y_pred):
y_pred = np.round(y_pred).astype(int)
y_true = np.round(y_true).astype(int)
y_pred = largest_connected_component(y_pred)
return np.sum(y_pred[y_true == 1]) * 2.0 / (np.sum(y_pred) + np.sum(y_true))
def crop_sample(x):
volume, mask = x
volume[volume < np.max(volume) * 0.1] = 0
z_projection = np.max(np.max(np.max(volume, axis=-1), axis=-1), axis=-1)
z_nonzero = np.nonzero(z_projection)
z_min = np.min(z_nonzero)
z_max = np.max(z_nonzero) + 1
y_projection = np.max(np.max(np.max(volume, axis=0), axis=-1), axis=-1)
y_nonzero = np.nonzero(y_projection)
y_min = np.min(y_nonzero)
y_max = np.max(y_nonzero) + 1
x_projection = np.max(np.max(np.max(volume, axis=0), axis=0), axis=-1)
x_nonzero = np.nonzero(x_projection)
x_min = np.min(x_nonzero)
x_max = np.max(x_nonzero) + 1
return (
volume[z_min:z_max, y_min:y_max, x_min:x_max],
mask[z_min:z_max, y_min:y_max, x_min:x_max],
)
def pad_sample(x):
volume, mask = x
a = volume.shape[1]
b = volume.shape[2]
if a == b:
return volume, mask
diff = (max(a, b) - min(a, b)) / 2.0
if a > b:
padding = ((0, 0), (0, 0), (int(np.floor(diff)), int(np.ceil(diff))))
else:
padding = ((0, 0), (int(np.floor(diff)), int(np.ceil(diff))), (0, 0))
mask = np.pad(mask, padding, mode="constant", constant_values=0)
padding = padding + ((0, 0),)
volume = np.pad(volume, padding, mode="constant", constant_values=0)
return volume, mask
def resize_sample(x, size=256):
volume, mask = x
v_shape = volume.shape
out_shape = (v_shape[0], size, size)
mask = resize(
mask,
output_shape=out_shape,
order=0,
mode="constant",
cval=0,
anti_aliasing=False,
)
out_shape = out_shape + (v_shape[3],)
volume = resize(
volume,
output_shape=out_shape,
order=2,
mode="constant",
cval=0,
anti_aliasing=False,
)
return volume, mask
def normalize_volume(volume):
p10 = np.percentile(volume, 10)
p99 = np.percentile(volume, 99)
volume = rescale_intensity(volume, in_range=(p10, p99))
m = np.mean(volume, axis=(0, 1, 2))
s = np.std(volume, axis=(0, 1, 2))
volume = (volume - m) / s
return volume
def log_images(x, y_true, y_pred, channel=1):
images = []
x_np = x[:, channel].cpu().numpy()
y_true_np = y_true[:, 0].cpu().numpy()
y_pred_np = y_pred[:, 0].cpu().numpy()
for i in range(x_np.shape[0]):
image = gray2rgb(np.squeeze(x_np[i]))
image = outline(image, y_pred_np[i], color=[255, 0, 0])
image = outline(image, y_true_np[i], color=[0, 255, 0])
images.append(image)
return images
def gray2rgb(image):
w, h = image.shape
image += np.abs(np.min(image))
image_max = np.abs(np.max(image))
if image_max > 0:
image /= image_max
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = image * 255
return ret
def outline(image, mask, color):
mask = np.round(mask)
yy, xx = np.nonzero(mask)
for y, x in zip(yy, xx):
if 0.0 < np.mean(mask[max(0, y - 1) : y + 2, max(0, x - 1) : x + 2]) < 1.0:
image[max(0, y) : y + 1, max(0, x) : x + 1] = color
return image