You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
While I looked on your launching example, i still dont get how to use my "custom" dataframe(okay, dataframe.value, i mean np array) in it?
I dont need to use part with "generate_tabular_synth_data" at all in this case?
But where should i get c_train/c_test/ground_truth_concept_masks then?
Or i just can assign them as None?
And look, i tried to split my initial df into x_train/x_test and so for y, then i ".value"-ed all of these df-s, then, i've gotten this:
File D:\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback..error_handler(*args, **kwargs)
119 filtered_tb = _process_traceback_frames(e.traceback)
120 # To get the full stack trace, call:
121 # keras.config.disable_traceback_filtering()
--> 122 raise e.with_traceback(filtered_tb) from None
123 finally:
124 del filtered_tb
File D:\anaconda3\Lib\site-packages\tensorflow\python\eager\execute.py:53, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
51 try:
52 ctx.ensure_initialized()
---> 53 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
54 inputs, attrs, num_outputs)
55 except core._NotOkStatusException as e:
56 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node compile_loss/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits defined at (most recent call last):
File "", line 198, in _run_module_as_main
File "", line 88, in _run_code
File "D:\anaconda3\Lib\site-packages\ipykernel_launcher.py", line 17, in
File "D:\anaconda3\Lib\site-packages\traitlets\config\application.py", line 992, in launch_instance
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelapp.py", line 701, in start
File "D:\anaconda3\Lib\site-packages\tornado\platform\asyncio.py", line 195, in start
File "D:\anaconda3\Lib\asyncio\windows_events.py", line 321, in run_forever
File "D:\anaconda3\Lib\asyncio\base_events.py", line 608, in run_forever
File "D:\anaconda3\Lib\asyncio\base_events.py", line 1936, in _run_once
File "D:\anaconda3\Lib\asyncio\events.py", line 84, in _run
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 534, in dispatch_queue
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 523, in process_one
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 429, in dispatch_shell
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 767, in execute_request
File "D:\anaconda3\Lib\site-packages\ipykernel\ipkernel.py", line 429, in do_execute
File "D:\anaconda3\Lib\site-packages\ipykernel\zmqshell.py", line 549, in run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3051, in run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3106, in _run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3311, in run_cell_async
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3493, in run_ast_nodes
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3553, in run_code
File "C:\Users\Timur.c\AppData\Local\Temp\ipykernel_10576\2716014408.py", line 9, in
File "D:\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 117, in error_handler
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 314, in fit
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 117, in one_step_on_iterator
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 104, in one_step_on_data
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 54, in train_step
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\trainer.py", line 316, in compute_loss
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\compile_utils.py", line 609, in call
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\compile_utils.py", line 645, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\loss.py", line 43, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\losses.py", line 22, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\losses.py", line 1722, in sparse_categorical_crossentropy
File "D:\anaconda3\Lib\site-packages\keras\src\ops\nn.py", line 1567, in sparse_categorical_crossentropy
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\nn.py", line 638, in sparse_categorical_crossentropy
Received a label value of 200000000 which is outside the valid range of [0, 540). Label values: 18000000 16000000 37000000 11300000 <...> 27000000 48000000 [[{{node compile_loss/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_one_step_on_iterator_68526]
Ah, and my splitted arrays (at least what i tried to get as "splitted") have such props:
x_train has shape (13024, 12) and type float64
y_train has shape (13024,) and type int64
x_test has shape (3257, 12) and type float64
y_test has shape (3257,) and type int64
You know, before this, i tried to give into "generate_tabular_synth_data" function my df, as variable named "latent" there. It worked in that block, but also, i was getting very strange, about -10E6-order losses (namely minus) and zero accuracy.
And even after this "half-done" block, next block was giving to me such error:
"ValueError: Only one class present in y_true. ROC AUC score is not defined in that case."
And i could understand this error in the way of absence in "generate_tabular_synth_data" function any specifying of y variable itself.
So, i think it's just i didnt get something very important, so I'd be happy if you help me to understand that all)
The text was updated successfully, but these errors were encountered:
Hello!
While I looked on your launching example, i still dont get how to use my "custom" dataframe(okay, dataframe.value, i mean np array) in it?
I dont need to use part with "generate_tabular_synth_data" at all in this case?
But where should i get c_train/c_test/ground_truth_concept_masks then?
Or i just can assign them as None?
And look, i tried to split my initial df into x_train/x_test and so for y, then i ".value"-ed all of these df-s, then, i've gotten this:
Error itself:
InvalidArgumentError Traceback (most recent call last)
Cell In[352], line 9
7 pretrain_epochs = 50
8 batch_size = 1024
----> 9 pretrain_hist = end_to_end_model.fit(
10 x=x_train,
11 y=y_train,
12 epochs=pretrain_epochs,
13 batch_size=batch_size,
14 validation_split=validation_size,
15 verbose=1,
16 )
File D:\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback..error_handler(*args, **kwargs)
119 filtered_tb = _process_traceback_frames(e.traceback)
120 # To get the full stack trace, call:
121 #
keras.config.disable_traceback_filtering()
--> 122 raise e.with_traceback(filtered_tb) from None
123 finally:
124 del filtered_tb
File D:\anaconda3\Lib\site-packages\tensorflow\python\eager\execute.py:53, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
51 try:
52 ctx.ensure_initialized()
---> 53 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
54 inputs, attrs, num_outputs)
55 except core._NotOkStatusException as e:
56 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node compile_loss/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits defined at (most recent call last):
File "", line 198, in _run_module_as_main
File "", line 88, in _run_code
File "D:\anaconda3\Lib\site-packages\ipykernel_launcher.py", line 17, in
File "D:\anaconda3\Lib\site-packages\traitlets\config\application.py", line 992, in launch_instance
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelapp.py", line 701, in start
File "D:\anaconda3\Lib\site-packages\tornado\platform\asyncio.py", line 195, in start
File "D:\anaconda3\Lib\asyncio\windows_events.py", line 321, in run_forever
File "D:\anaconda3\Lib\asyncio\base_events.py", line 608, in run_forever
File "D:\anaconda3\Lib\asyncio\base_events.py", line 1936, in _run_once
File "D:\anaconda3\Lib\asyncio\events.py", line 84, in _run
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 534, in dispatch_queue
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 523, in process_one
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 429, in dispatch_shell
File "D:\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 767, in execute_request
File "D:\anaconda3\Lib\site-packages\ipykernel\ipkernel.py", line 429, in do_execute
File "D:\anaconda3\Lib\site-packages\ipykernel\zmqshell.py", line 549, in run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3051, in run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3106, in _run_cell
File "D:\anaconda3\Lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3311, in run_cell_async
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3493, in run_ast_nodes
File "D:\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3553, in run_code
File "C:\Users\Timur.c\AppData\Local\Temp\ipykernel_10576\2716014408.py", line 9, in
File "D:\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 117, in error_handler
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 314, in fit
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 117, in one_step_on_iterator
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 104, in one_step_on_data
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 54, in train_step
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\trainer.py", line 316, in compute_loss
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\compile_utils.py", line 609, in call
File "D:\anaconda3\Lib\site-packages\keras\src\trainers\compile_utils.py", line 645, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\loss.py", line 43, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\losses.py", line 22, in call
File "D:\anaconda3\Lib\site-packages\keras\src\losses\losses.py", line 1722, in sparse_categorical_crossentropy
File "D:\anaconda3\Lib\site-packages\keras\src\ops\nn.py", line 1567, in sparse_categorical_crossentropy
File "D:\anaconda3\Lib\site-packages\keras\src\backend\tensorflow\nn.py", line 638, in sparse_categorical_crossentropy
Received a label value of 200000000 which is outside the valid range of [0, 540). Label values: 18000000 16000000 37000000 11300000 <...> 27000000 48000000 [[{{node compile_loss/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_one_step_on_iterator_68526]
Ah, and my splitted arrays (at least what i tried to get as "splitted") have such props:
x_train has shape (13024, 12) and type float64
y_train has shape (13024,) and type int64
x_test has shape (3257, 12) and type float64
y_test has shape (3257,) and type int64
You know, before this, i tried to give into "generate_tabular_synth_data" function my df, as variable named "latent" there. It worked in that block, but also, i was getting very strange, about -10E6-order losses (namely minus) and zero accuracy.
And even after this "half-done" block, next block was giving to me such error:
"ValueError: Only one class present in y_true. ROC AUC score is not defined in that case."
And i could understand this error in the way of absence in "generate_tabular_synth_data" function any specifying of y variable itself.
So, i think it's just i didnt get something very important, so I'd be happy if you help me to understand that all)
The text was updated successfully, but these errors were encountered: