-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbronchialTree4cm.m
390 lines (339 loc) · 15.2 KB
/
bronchialTree4cm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
clear all, close all
load xarxa.mat
load ("Segments_Macacs_SenseFiltres.mat",'segments');
% Tracha and first bifuraction (left and right lungs)
dTraq = 7.9; % Tracha diameter
% Matrix contaning all branches: each row is a bronchial branch
Tubs = [0 0 dTraq 3*dTraq 0 0 3*dTraq 0 0 0 2 -1 0 0 0];
SE = Xarxa(:,5); % Segments numbered (1 to 20)
Xarxa = Xarxa(:,1:4); % Forth colum 1 or 2 for right and left lung respectively
% General parameters
M = 3; % Proportional factor for diameter-length of the branch
n = 3; % Optimum factor for the function Angles
% First bifurcation
N1 = sum(Xarxa(:,4)==1); % Volume right lung
N0 = sum(Xarxa(:,4)==1) + sum(Xarxa(:,4)==2); % Total volume
d1 = dTraq*(N1/N0)^(1/3); % Diameter for the branch irrigating the right lung
d2 = dTraq*(sum(Xarxa(:,4)==2)/size(Xarxa,1))^(1/3); % Diameter for the left one
l1 = M*d1; % Longitud of the right branch
l2 = M*d2; % Left branch
% fill1 and fill2 define the value in hte fourth colume of Xarxa that
% reference the points of the irrigated volume for each branch
fill1 = 1;
fill2 = 2;
X = Xarxa;
xf = [0 0 0]; % End point of the mother branch
u = [0 -1 0]; % Unitary orthogonal vector to the bifurcation plane
v = [0 0 -1]; % Unitary vector in the directon of the mother's branch
vs = [-1 0 0]; % Unitary orthogonal vector to the separation plane
[cos1,sin1,cos2,sin2,sin11,cos11,sin22,cos22] = anglesnew(fill1,fill2,X,xf,n,u,v,vs);
% cos and sin with one number reference the direction in the bifrucation
% plane, following the axes defined by the mother branch and the separation
% plane. The ones with two numbers define the direction in the separation
% plane, with respect to the axes defined by the mother branch and the
% bifurcation plane.
dir1 = v*(cos1+cos11)+vs*sin1+u*sin11; dir1 = dir1/norm(dir1); % direcction daugther 1
dir2 = v*(cos2+cos22)-vs*sin2+u*sin22; dir2 = dir2/norm(dir2); % direcction daugther 2
% The new branches are:
Tubs = [Tubs;
1 1 d1 l1 0 0 0 (v*cos1+vs*sin1)*l1 2 v acosd(cos1);
1 1 d2 l2 0 0 0 (v*cos2-vs*sin2)*l2 2 v acosd(cos2)];
% RIGHT LUNG --------------------------------------------------------------
% Each colum of the cell array contains the referenced lobuls of each
% partition in each iteration. For example, in the first iteration will
% compute the branches that irrigate volume 1:3 and 4:11. The following
% iteration starts from the branch that irrigates the volume defined in the
% first row, in the case mentioned, it is 1:3 and is devided into 1:2 and 3
%sec = { 1:3, 1:2, 1, 4:5, 4, 6:10, 7:10, 7:8, 7, 9;
% 4:11, 3, 2, 6:11, 5, 11, 6, 9:10, 8, 10};
sec = { 1:3, 1:2, 1, 7:10, 4, 7:8, 7, 9;
4:11, 3, 2, 6, 5, 9:10, 8, 10;
[], [], [], 4:5, [], [], [], [];
[], [], [], 11, [], [], [], []};
for k = 1:size(sec,2)
Xn = Xarxa;
Xn(ismember(SE,sec{1,k}),4) = 3; % Volume irrigated by daugther branch 1 is referenced with 3
Xn(ismember(SE,sec{2,k}),4) = 4; % Volume irrigated by daugther branch 2 is referenced with 4
g1 = Xn(:,4) == 3;
g2 = Xn(:,4) == 4;
% Trifurcacio (amb centre de massa)
if k == 4
Xn(ismember(SE,sec{3,k}),4) = 5;
Xn(ismember(SE,sec{4,k}),4) = 6;
g3 = Xn(:,4) == 5; g4 = Xn(:,4) == 6;
fill3 = 5; fill4 = 6;
in = 5; % Row of the branch leading the trifurcation 4:5 - 11 - 6:10
xf = Tubs(in,8:10);
d1 = Tubs(in,3); % Mother's diameter
cm1 = [0 0 0] + mean(Xn(Xn(:,4) == 3,1:3)); dir1 = (cm1-xf)/norm(cm1-xf);
cm2 = [0 0 0] + mean(Xn(Xn(:,4) == 4,1:3)); dir2 = (cm2-xf)/norm(cm2-xf);
cm3 = [0 0 0] + mean(Xn(Xn(:,4) == 5,1:3)); dir3 = (cm3-xf)/norm(cm3-xf);
cm4 = [0 0 0] + mean(Xn(Xn(:,4) == 6,1:3)); dir4 = (cm4-xf)/norm(cm4-xf);
v = Tubs(in,8:10) - Tubs(in,5:7); v = v/norm(v); % Unitary mother branch vector
% Volums for each branch = sum number of points
N1 = sum(Xn(:,4)==fill1);
N2 = sum(Xn(:,4)==fill2);
N3 = sum(Xn(:,4)==fill3);
N4 = sum(Xn(:,4)==fill4);
N0 = N1 + N2 + N3 + N4;
% Diametres
d2 = d1*(N1/N0)^(1/3);
d3 = d1*(N2/N0)^(1/3);
d4 = d1*(N3/N0)^(1/3);
d5 = d1*(N4/N0)^(1/3);
% Longituds
l1 = M*d2;
l2 = M*d3;
l3 = M*d4;
l4 = M*d5;
Tubs = [Tubs;
3 4 d2 l1 xf xf+dir1*l1 2 v acosd(dot(v,dir1));
3 4 d3 l2 xf xf+dir2*l2 2 v acosd(dot(v,dir2));
3 4 d4 l3 xf xf+dir3*l3 2 v acosd(dot(v,dir3));
3 4 d5 l4 xf xf+dir4*l4 2 v acosd(dot(v,dir4))];
else
% Bifurcacio
% Separation plane is find by Linear Discriminant Analisis method
X = [Xn(g1,1:3); Xn(g2,1:3)];
seg = cell(length(X),1);
seg(1:sum(g1)) = {'s1'}; % Points corresponding to class 1 (volume 1)
seg((1:sum(g2))+ sum(g1)) = {'s2'}; % Points corresponding to class 2 (volume 2)
MdlLinear = fitcdiscr(X,seg); % Adjunt linear discriminant model
L = MdlLinear.Coeffs(1,2).Linear; % Separation plane perpendicular vector
vs = L'./norm(L); % Unitary normal separation plane vector
% For the angles function:
fill1 = 3;
fill2 = 4;
X = Xn;
if ismember(k, [6 8]) % In this columns of sec there is a change in the bronchial path
switch k
% case 4
% in = 5; % Row of the branch leading to 4:11
% d1 = Tubs(in,3); % Mother's diameter
case 6
in = 10; % Row of the branch leading to 6:10
d1 = Tubs(in,3);
case 8
in = 17; % Row of the branch leading to 9:10
d1 = Tubs(in,3);
end
xf = Tubs(in,8:10);
v = Tubs(in,8:10) - Tubs(in,5:7); v = v/norm(v); % Unitary mother branch vector
else
xf = Tubs(end-1,8:10);
v = Tubs(end-1,8:10) - Tubs(end-1,5:7); v = v/norm(v); % Unitary mother branch vector
end
% Rule 1: The dot product between vs and cmp1 - xf has to be positive.
% If not, vs = -vs.
vs = sign(dot(vs,[0 0 0] + mean(X(X(:,4)==fill1,1:3))-xf))*vs;
u = cross(vs,v); u = u./norm(u); % Unitary normal bifurcation plane vector
% Since separation vector does not necessarly be orhotgonal to mother
% and bifrucation vectors, the cross product of these two is performed
% to obtain the perpedindicular vector:
us = cross(v,u); % Unitary normal separation vector for the axis
[cos1,sin1,cos2,sin2,sin11,cos11,sin22,cos22,s1,s2] = angles(fill1,fill2,X,xf,n,u,v,us);
dir1 = v*(cos1+cos11)+us*sin1+s1*u*sin11; dir1 = dir1/norm(dir1); % Direction daugther 1
dir2 = v*(cos2+cos22)-us*sin2+s2*u*sin22; dir2 = dir2/norm(dir2); % Direction daugther 2
if ismember(k,1:3)
g = 1+k;
m = 2*k;
elseif k == 4
g = 3;
m = 5;
elseif ismember(k,5:6)
g = 4;
m = k + 5;
elseif k == 7
g = 5;
m = 14;
elseif ismember(k,8:10)
m = k + 9;
if k == 8
g = 6;
else
g = 7;
end
end
% Volums for each branch = sum number of points
N1 = sum(Xn(:,4)==3);
N2 = sum(Xn(:,4)==4);
N0 = N1 + N2;
% Diametres
d3 = d1*(N1/N0)^(1/3);
d4 = d1*(N2/N0)^(1/3);
% Longituds
l1 = M*d3;
l2 = M*d4;
d1 = d3; % For the next iteration
Tubs = [Tubs;
g m d3 l1 xf xf+dir1*l1 2 v acosd(dot(v,dir1));
g m d4 l2 xf xf+dir2*l2 2 v acosd(dot(v,dir2))];
end
end
% Change natality of the branches irrigating the lobes:
Tubs([7:9 11 13:15 18:21],11) = 0;
% LEFT LUNG ---------------------------------------------------------------
% Each colum of the cell array contains the referenced lobuls of each
% partition in each iteration. For example, in the first iteration will
% compute the branches that irrigate volume 1:3 and 4:11. The following
% iteration starts from the branch that irrigates the volume defined in the
% first row, in the case mentioned, it is 1:3 and is devided into 1:2 and 3
sec = {12:13, 12, 14:15, 14, 17:20, 17:18, 17, 19;
14:20, 13, 16:20, 15, 16, 19:20, 18, 20};
st = length(Tubs(:,1));
for k = 1:size(sec,2)
Xn = Xarxa;
Xn(ismember(SE,sec{1,k}),4) = 3; % Volume irrigated by daugther branch 1 is referenced with 3
Xn(ismember(SE,sec{2,k}),4) = 4; % Volume irrigated by daugther branch 2 is referenced with 4
g1 = Xn(:,4) == 3; % Logical indexes for volume 1
g2 = Xn(:,4) == 4; % Logical indexes for volume 2
% Separation plane is find by Linear Discriminant Analisis method
X = [Xn(g1,1:3); Xn(g2,1:3)];
seg = cell(length(X),1);
seg(1:sum(g1)) = {'s1'}; % Points corresponding to class 1 (volume 1)
seg((1:sum(g2))+ sum(g1)) = {'s2'}; % Points corresponding to class 2 (volume 2)
MdlLinear = fitcdiscr(X,seg); % Adjunt linear discriminant model
L = MdlLinear.Coeffs(1,2).Linear; % Separation plane perpendicular vector
vs = L'./norm(L); % Unitary normal separation plane vector
% For the angles function:
fill1 = 3;
fill2 = 4;
X = Xn;
if ismember(k, [1,3,5,8]) % In this columns of sec there is a change in the bronchial path
switch k
case 1
in = 3; % Row of the branch leading to left lung
d1 = Tubs(in,3); % Mother's diameter
case 3
in = 23; % Row of the branch leading to 14:20
d1 = Tubs(in,3); % Mother's diameter
case 5
in = 27; % Row of the branch leading to 16:20
d1 = Tubs(in,3);
case 8
in = 33; % Row of the branch leading to 19:20
d1 = Tubs(in,3);
end
xf = Tubs(in,8:10);
v = Tubs(in,8:10) - Tubs(in,5:7); v = v/norm(v); % Unitary mother branch vector
else
xf = Tubs(end-1,8:10);
v = Tubs(end-1,8:10) - Tubs(end-1,5:7); v = v/norm(v); % Unitary mother branch vector
end
if dot(vs,[0 0 0] + mean(X(X(:,4)==fill1,1:3))-xf) < 0
vs = - vs;
end
u = cross(vs,v); u = u./norm(u); % Unitary normal bifurcation plane vector
% Since separation vector does not necessarly be orhotgonal to mother
% and bifrucation vectors, the cross product of these two is performed
% to obtain the perpedindicular vector:
us = cross(v,u); % Unitary normal separation vector for the axis
[cos1,sin1,cos2,sin2,sin11,cos11,sin22,cos22,s1,s2] = angles(fill1,fill2,X,xf,n,u,v,us);
dir1 = v*(cos1+cos11)+us*sin1+s1*u*sin11; dir1 = dir1/norm(dir1); % Direction daugther 1
dir2 = v*(cos2+cos22)-us*sin2+s2*u*sin22; dir2 = dir2/norm(dir2); % Direction daugther 2
% Generation and which is the mother
if k == 1
g = 2;
m = 3;
elseif k == 2
g = 3;
m = 24;
elseif k == 3
g = k;
m = 25;
elseif k == 4 || k == 5
g = 4;
m = k + 24;
elseif k == 6
g = 5;
m = 33;
elseif k == 7 || k == 8
g = 6;
m = k + 27;
end
% Volums for each branch = sum number of points
N1 = sum(Xn(:,4)==3);
N2 = sum(Xn(:,4)==4);
N0 = N1 + N2;
% Diametres
d3 = d1*(N1/N0)^(1/3);
d4 = d1*(N2/N0)^(1/3);
% Longituds
l1 = M*d3;
l2 = M*d4;
d1 = d3; % For the next iteration
Tubs = [Tubs;
g m d3 l1 xf xf+dir1*l1 2 v acosd(dot(v,dir1));
g m d4 l2 xf xf+dir2*l2 2 v acosd(dot(v,dir2))];
end
% Change natality of the branches irrigating the lobes:
Tubs([24,25,28,29,31,34,35,36,37],11) = 0;
%% REPRESENTATION ----------------------------------------------------------
pl = 1:11;
pr = 12:20;
colormap jet;
cmap = colormap; % Colors for the plot
figure(1);
hold on; axis equal
for k = 1:length(pl)
b1 = bar3(nan,nan);
b.FaceColor = cmap(k*floor(length(cmap)/length(pl)),:);
end
for k = 1:length(pr)
b2 = bar3(nan,nan);
b.FaceColor = cmap(k*floor(length(cmap)/length(pr)),:);
end
%title('Bronchial tree','FontSize',15,'Interpreter','latex')
i = 1; sec1 = [3,1,2,6,11,5,4,7,8,9,10,12,13,14,15,16,17,18,19,20];
for k = 1:size(Tubs,1)
% All branches faded and black, except those irrigating a lobe. These
% will be opaque and have the color of the lobe which they irrigate.
if Tubs(k,11) == 0
Tubs(k,11) = 1;
if k < 21
plcolor = cmap(sec1(i)*floor(length(cmap)/length(pl)),:);
R = double(ismember(segments,sec1(i))); % Get the desired volume of the matrix segments
elseif k == 21
plcolor = cmap(sec1(i)*floor(length(cmap)/length(pl)),:);
R = double(ismember(segments,sec1(i))); % Get the desired volume of the matrix segments
i = 0;
else
plcolor = cmap(i*floor(length(cmap)/length(pr)),:);
R = double(ismember(segments,sec1(i+11))); % Get the desired volume of the matrix segments
end
branca(Tubs(k,5:7),Tubs(k,8:10), Tubs(k,3)/2, 100, plcolor, 1)
fR = isosurface(R, 0.99); % Create the patch object, isovalue = 0.99 since we want the contour
fR.faces = fliplr(fR.faces); % Ensure normals point OUT
coordenades_carina = [253 279 171];
dX = 0.310547; % mida x pixel en mm
dY = 0.310547; % mida y pixel en mm
dZ = 0.625; % mida z pixel en mm
fR = transformar_coordenades(fR,coordenades_carina,[dX dY dZ]); % Escalate to real values
%figure(1);
patch(fR,'FaceColor',plcolor,'FaceAlpha',0.1,'EdgeColor','none') % Represent patch object
%display(sec1(i),'segment')
i = i + 1;
else
branca(Tubs(k,5:7),Tubs(k,8:10), Tubs(k,3)/2, 100, 'k', .25);
end
end
xlabel('X [mm]'); ylabel('Y [mm]'); zlabel('Z [mm]')
Tubs(7,16) = 3; Tubs(8,16) = 1; Tubs(9,16) = 2; Tubs(18,16) = 7;
Tubs(19,16) = 8; Tubs(20,16) = 9; Tubs(21,16) = 10; Tubs(11,16) = 6;
Tubs(14,16) = 4; Tubs(15,16) = 5; Tubs(13,16) = 11;
Tubs([24,25,28,29,31,34,35,36,37],16) = [12:20];
save('BT_model1_2.mat','Tubs','-mat')
% leg1=legend(p,num2str(round(R(ind)')),'Location','NorthEast');set(leg1,'FontSize',9);
% ah1=axes('position',get(gca,'position'),'visible','off');
% leg2=legend(ah1,p1,magnitude{ind},'Location','NorthWest');set(leg2,'FontSize',9);
% legendTitle (leg1, 'R (km)' );
% legendTitle (leg2, 'Magnitude' );
%
% l = legend('3','1','2','4','5','11','6','7','8','9','10','12','13','14','15','16','17','18','19','20');
% l.Location = 'eastoutside';
% l.NumColumns = 2;
% axis equal
% Function to represent the volumes ---------------------------------------
function fv = transformar_coordenades(fv,xc,dx)
fv.vertices = (fv.vertices-xc).*dx;
end