Skip to content

Latest commit

 

History

History
109 lines (70 loc) · 3.45 KB

README.md

File metadata and controls

109 lines (70 loc) · 3.45 KB

alt text

Welcome to the repo for classifying crystal structures & space groups from 1D X-ray diffraction (XRD) patterns.

Can machine learning identify crystals in light diffraction patterns?
Check out our paper for more details and information, and be sure to cite us.


Paper:

@article{Crystals,
title   = {Automated Classification of Big X-ray Data Using Deep Learning Models},
author  = {Jerardo Salgado; Sam Lerman; Zhaotong Du; Chenliang Xu; and Niaz Abdolrahim},
journal = {npj Computational Materials},
year    = {2023}
}

☝️ Setup

This project is built with the UnifiedML deep learning library/framework.

pip install UnifiedML

Reproducing The Work

To run, we have 3 model variants for predicting 7-way crystal types:

Model 1: No-pool CNN

python XRD.py task=NPCNN

Model 2: Standard CNN

python XRD.py task=SCNN

Model 3: MLP

python XRD.py task=MLP

💡 To predict 230-way space groups instead, add the num_classes=230 flag.

python XRD.py task=NPCNN num_classes=230

Plots automatically save to ./Benchmarking/<experiment>/.

The above scripts will launch training on the "souped" synthetic + random 50% RRUFF experimental data, & evaluation on the remaining 50% RRUFF data. The trained model is saved in a ./Checkpoints directory and can be loaded with the load=true flag.

All model and dataset code can be found in XRD.py

Custom datasets can be evaluated with the Dataset= flag and train_steps=0 load=true from a saved model.

Differences from and additions to paper

Synthetic data

This repo automatically downloads the public CIF database as opposed to ICSD as in the paper. If you’d rather use ICSD and have access, you can download it to the Data/Generated/CIFs_ICSD/ directory, and this code will automatically use that instead as in the paper. If you’d like to use both, add the open_access=true flag.

Souping and evaluation data

This GitHub provides the experimental real-world data RRUFF. It will be detected and used for souping as described in the paper. That is, reserving a random 50% subset of the real-world data for training and the remaining 50% for evaluation. If you’d like to disable souping, use the soup=false flag. If you’d like to train only on a 0.9/0.1 split of the synthetic data, you can use rruff=false.


Citing

If you find this work useful, be sure to cite us:

@article{Crystals,
title   = {Automated Classification of Big X-ray Data Using Deep Learning Models},
author  = {Jerardo Salgado; Sam Lerman; Zhaotong Du; Chenliang Xu; and Niaz Abdolrahim},
journal = {npj Computational Materials},
year    = {2023}
}

Text changing depending on mode. Light: 'Light' Dark: 'Dark'

All UnifiedML features and syntax are supported.

This code is licensed under the MIT license.