-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmatplotlibcpp.h
2986 lines (2320 loc) · 97.4 KB
/
matplotlibcpp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
// Python headers must be included before any system headers, since
// they define _POSIX_C_SOURCE
#include <Python.h>
#include <vector>
#include <map>
#include <array>
#include <numeric>
#include <algorithm>
#include <stdexcept>
#include <iostream>
#include <cstdint> // <cstdint> requires c++11 support
#include <functional>
#include <string> // std::stod
#ifndef WITHOUT_NUMPY
# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
# include <numpy/arrayobject.h>
# ifdef WITH_OPENCV
# include <opencv2/opencv.hpp>
# endif // WITH_OPENCV
/*
* A bunch of constants were removed in OpenCV 4 in favour of enum classes, so
* define the ones we need here.
*/
# if CV_MAJOR_VERSION > 3
# define CV_BGR2RGB cv::COLOR_BGR2RGB
# define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA
# endif
#endif // WITHOUT_NUMPY
#if PY_MAJOR_VERSION >= 3
# define PyString_FromString PyUnicode_FromString
# define PyInt_FromLong PyLong_FromLong
# define PyString_FromString PyUnicode_FromString
#endif
namespace matplotlibcpp {
namespace detail {
static std::string s_backend;
struct _interpreter {
PyObject* s_python_function_arrow;
PyObject *s_python_function_show;
PyObject *s_python_function_close;
PyObject *s_python_function_draw;
PyObject *s_python_function_pause;
PyObject *s_python_function_save;
PyObject *s_python_function_figure;
PyObject *s_python_function_fignum_exists;
PyObject *s_python_function_plot;
PyObject *s_python_function_quiver;
PyObject* s_python_function_contour;
PyObject *s_python_function_semilogx;
PyObject *s_python_function_semilogy;
PyObject *s_python_function_loglog;
PyObject *s_python_function_fill;
PyObject *s_python_function_fill_between;
PyObject *s_python_function_hist;
PyObject *s_python_function_imshow;
PyObject *s_python_function_scatter;
PyObject *s_python_function_boxplot;
PyObject *s_python_function_subplot;
PyObject *s_python_function_subplot2grid;
PyObject *s_python_function_legend;
PyObject *s_python_function_xlim;
PyObject *s_python_function_ion;
PyObject *s_python_function_ginput;
PyObject *s_python_function_ylim;
PyObject *s_python_function_title;
PyObject *s_python_function_axis;
PyObject *s_python_function_axhline;
PyObject *s_python_function_axvline;
PyObject *s_python_function_axvspan;
PyObject *s_python_function_xlabel;
PyObject *s_python_function_ylabel;
PyObject *s_python_function_gca;
PyObject *s_python_function_xticks;
PyObject *s_python_function_yticks;
PyObject* s_python_function_margins;
PyObject *s_python_function_tick_params;
PyObject *s_python_function_grid;
PyObject* s_python_function_cla;
PyObject *s_python_function_clf;
PyObject *s_python_function_errorbar;
PyObject *s_python_function_annotate;
PyObject *s_python_function_tight_layout;
PyObject *s_python_colormap;
PyObject *s_python_empty_tuple;
PyObject *s_python_function_stem;
PyObject *s_python_function_xkcd;
PyObject *s_python_function_text;
PyObject *s_python_function_suptitle;
PyObject *s_python_function_bar;
PyObject *s_python_function_barh;
PyObject *s_python_function_colorbar;
PyObject *s_python_function_subplots_adjust;
PyObject *s_python_function_rcparams;
PyObject *s_python_function_spy;
/* For now, _interpreter is implemented as a singleton since its currently not possible to have
multiple independent embedded python interpreters without patching the python source code
or starting a separate process for each. [1]
Furthermore, many python objects expect that they are destructed in the same thread as they
were constructed. [2] So for advanced usage, a `kill()` function is provided so that library
users can manually ensure that the interpreter is constructed and destroyed within the
same thread.
1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program
2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256
*/
static _interpreter& get() {
return interkeeper(false);
}
static _interpreter& kill() {
return interkeeper(true);
}
// Stores the actual singleton object referenced by `get()` and `kill()`.
static _interpreter& interkeeper(bool should_kill) {
static _interpreter ctx;
if (should_kill)
ctx.~_interpreter();
return ctx;
}
PyObject* safe_import(PyObject* module, std::string fname) {
PyObject* fn = PyObject_GetAttrString(module, fname.c_str());
if (!fn)
throw std::runtime_error(std::string("Couldn't find required function: ") + fname);
if (!PyFunction_Check(fn))
throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction."));
return fn;
}
private:
#ifndef WITHOUT_NUMPY
# if PY_MAJOR_VERSION >= 3
void *import_numpy() {
import_array(); // initialize C-API
return NULL;
}
# else
void import_numpy() {
import_array(); // initialize C-API
}
# endif
#endif
_interpreter() {
// optional but recommended
#if PY_MAJOR_VERSION >= 3
wchar_t name[] = L"plotting";
#else
char name[] = "plotting";
#endif
Py_SetProgramName(name);
Py_Initialize();
wchar_t const *dummy_args[] = {L"Python", NULL}; // const is needed because literals must not be modified
wchar_t const **argv = dummy_args;
int argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1;
#if PY_MAJOR_VERSION >= 3
PySys_SetArgv(argc, const_cast<wchar_t **>(argv));
#else
PySys_SetArgv(argc, (char **)(argv));
#endif
#ifndef WITHOUT_NUMPY
import_numpy(); // initialize numpy C-API
#endif
PyObject* matplotlibname = PyString_FromString("matplotlib");
PyObject* pyplotname = PyString_FromString("matplotlib.pyplot");
PyObject* cmname = PyString_FromString("matplotlib.cm");
PyObject* pylabname = PyString_FromString("pylab");
if (!pyplotname || !pylabname || !matplotlibname || !cmname) {
throw std::runtime_error("couldnt create string");
}
PyObject* matplotlib = PyImport_Import(matplotlibname);
Py_DECREF(matplotlibname);
if (!matplotlib) {
PyErr_Print();
throw std::runtime_error("Error loading module matplotlib!");
}
// matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
// or matplotlib.backends is imported for the first time
if (!s_backend.empty()) {
PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str());
}
PyObject* pymod = PyImport_Import(pyplotname);
Py_DECREF(pyplotname);
if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); }
s_python_colormap = PyImport_Import(cmname);
Py_DECREF(cmname);
if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); }
PyObject* pylabmod = PyImport_Import(pylabname);
Py_DECREF(pylabname);
if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); }
s_python_function_arrow = safe_import(pymod, "arrow");
s_python_function_show = safe_import(pymod, "show");
s_python_function_close = safe_import(pymod, "close");
s_python_function_draw = safe_import(pymod, "draw");
s_python_function_pause = safe_import(pymod, "pause");
s_python_function_figure = safe_import(pymod, "figure");
s_python_function_fignum_exists = safe_import(pymod, "fignum_exists");
s_python_function_plot = safe_import(pymod, "plot");
s_python_function_quiver = safe_import(pymod, "quiver");
s_python_function_contour = safe_import(pymod, "contour");
s_python_function_semilogx = safe_import(pymod, "semilogx");
s_python_function_semilogy = safe_import(pymod, "semilogy");
s_python_function_loglog = safe_import(pymod, "loglog");
s_python_function_fill = safe_import(pymod, "fill");
s_python_function_fill_between = safe_import(pymod, "fill_between");
s_python_function_hist = safe_import(pymod,"hist");
s_python_function_scatter = safe_import(pymod,"scatter");
s_python_function_boxplot = safe_import(pymod,"boxplot");
s_python_function_subplot = safe_import(pymod, "subplot");
s_python_function_subplot2grid = safe_import(pymod, "subplot2grid");
s_python_function_legend = safe_import(pymod, "legend");
s_python_function_xlim = safe_import(pymod, "xlim");
s_python_function_ylim = safe_import(pymod, "ylim");
s_python_function_title = safe_import(pymod, "title");
s_python_function_axis = safe_import(pymod, "axis");
s_python_function_axhline = safe_import(pymod, "axhline");
s_python_function_axvline = safe_import(pymod, "axvline");
s_python_function_axvspan = safe_import(pymod, "axvspan");
s_python_function_xlabel = safe_import(pymod, "xlabel");
s_python_function_ylabel = safe_import(pymod, "ylabel");
s_python_function_gca = safe_import(pymod, "gca");
s_python_function_xticks = safe_import(pymod, "xticks");
s_python_function_yticks = safe_import(pymod, "yticks");
s_python_function_margins = safe_import(pymod, "margins");
s_python_function_tick_params = safe_import(pymod, "tick_params");
s_python_function_grid = safe_import(pymod, "grid");
s_python_function_ion = safe_import(pymod, "ion");
s_python_function_ginput = safe_import(pymod, "ginput");
s_python_function_save = safe_import(pylabmod, "savefig");
s_python_function_annotate = safe_import(pymod,"annotate");
s_python_function_cla = safe_import(pymod, "cla");
s_python_function_clf = safe_import(pymod, "clf");
s_python_function_errorbar = safe_import(pymod, "errorbar");
s_python_function_tight_layout = safe_import(pymod, "tight_layout");
s_python_function_stem = safe_import(pymod, "stem");
s_python_function_xkcd = safe_import(pymod, "xkcd");
s_python_function_text = safe_import(pymod, "text");
s_python_function_suptitle = safe_import(pymod, "suptitle");
s_python_function_bar = safe_import(pymod,"bar");
s_python_function_barh = safe_import(pymod, "barh");
s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar");
s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust");
s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams");
s_python_function_spy = PyObject_GetAttrString(pymod, "spy");
#ifndef WITHOUT_NUMPY
s_python_function_imshow = safe_import(pymod, "imshow");
#endif
s_python_empty_tuple = PyTuple_New(0);
}
~_interpreter() {
Py_Finalize();
}
};
} // end namespace detail
/// Select the backend
///
/// **NOTE:** This must be called before the first plot command to have
/// any effect.
///
/// Mainly useful to select the non-interactive 'Agg' backend when running
/// matplotlibcpp in headless mode, for example on a machine with no display.
///
/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use
inline void backend(const std::string& name)
{
detail::s_backend = name;
}
inline bool annotate(std::string annotation, double x, double y)
{
detail::_interpreter::get();
PyObject * xy = PyTuple_New(2);
PyObject * str = PyString_FromString(annotation.c_str());
PyTuple_SetItem(xy,0,PyFloat_FromDouble(x));
PyTuple_SetItem(xy,1,PyFloat_FromDouble(y));
PyObject* kwargs = PyDict_New();
PyDict_SetItemString(kwargs, "xy", xy);
PyObject* args = PyTuple_New(1);
PyTuple_SetItem(args, 0, str);
PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if(res) Py_DECREF(res);
return res;
}
namespace detail {
#ifndef WITHOUT_NUMPY
// Type selector for numpy array conversion
template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default
template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; };
template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; };
template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; };
template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; };
template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; };
template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; };
template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; };
template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; };
template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; };
template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; };
template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; };
// Sanity checks; comment them out or change the numpy type below if you're compiling on
// a platform where they don't apply
static_assert(sizeof(long long) == 8);
template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; };
static_assert(sizeof(unsigned long long) == 8);
template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; };
template<typename Numeric>
PyObject* get_array(const std::vector<Numeric>& v)
{
npy_intp vsize = v.size();
NPY_TYPES type = select_npy_type<Numeric>::type;
if (type == NPY_NOTYPE) {
size_t memsize = v.size()*sizeof(double);
double* dp = static_cast<double*>(::malloc(memsize));
for (size_t i=0; i<v.size(); ++i)
dp[i] = v[i];
PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp);
PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA);
return varray;
}
PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data()));
return varray;
}
template<typename Numeric>
PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v)
{
if (v.size() < 1) throw std::runtime_error("get_2d_array v too small");
npy_intp vsize[2] = {static_cast<npy_intp>(v.size()),
static_cast<npy_intp>(v[0].size())};
PyArrayObject *varray =
(PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE);
double *vd_begin = static_cast<double *>(PyArray_DATA(varray));
for (const ::std::vector<Numeric> &v_row : v) {
if (v_row.size() != static_cast<size_t>(vsize[1]))
throw std::runtime_error("Missmatched array size");
std::copy(v_row.begin(), v_row.end(), vd_begin);
vd_begin += vsize[1];
}
return reinterpret_cast<PyObject *>(varray);
}
#else // fallback if we don't have numpy: copy every element of the given vector
template<typename Numeric>
PyObject* get_array(const std::vector<Numeric>& v)
{
PyObject* list = PyList_New(v.size());
for(size_t i = 0; i < v.size(); ++i) {
PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i)));
}
return list;
}
#endif // WITHOUT_NUMPY
// sometimes, for labels and such, we need string arrays
inline PyObject * get_array(const std::vector<std::string>& strings)
{
PyObject* list = PyList_New(strings.size());
for (std::size_t i = 0; i < strings.size(); ++i) {
PyList_SetItem(list, i, PyString_FromString(strings[i].c_str()));
}
return list;
}
// not all matplotlib need 2d arrays, some prefer lists of lists
template<typename Numeric>
PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll)
{
PyObject* listlist = PyList_New(ll.size());
for (std::size_t i = 0; i < ll.size(); ++i) {
PyList_SetItem(listlist, i, get_array(ll[i]));
}
return listlist;
}
} // namespace detail
/// Plot a line through the given x and y data points..
///
/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html
template<typename Numeric>
bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
{
assert(x.size() == y.size());
detail::_interpreter::get();
// using numpy arrays
PyObject* xarray = detail::get_array(x);
PyObject* yarray = detail::get_array(y);
// construct positional args
PyObject* args = PyTuple_New(2);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
// construct keyword args
PyObject* kwargs = PyDict_New();
for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
{
PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
}
PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if(res) Py_DECREF(res);
return res;
}
// TODO - it should be possible to make this work by implementing
// a non-numpy alternative for `detail::get_2darray()`.
#ifndef WITHOUT_NUMPY
template <typename Numeric>
void plot_surface(const std::vector<::std::vector<Numeric>> &x,
const std::vector<::std::vector<Numeric>> &y,
const std::vector<::std::vector<Numeric>> &z,
const std::map<std::string, std::string> &keywords =
std::map<std::string, std::string>(),
const long fig_number=0)
{
detail::_interpreter::get();
// We lazily load the modules here the first time this function is called
// because I'm not sure that we can assume "matplotlib installed" implies
// "mpl_toolkits installed" on all platforms, and we don't want to require
// it for people who don't need 3d plots.
static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
if (!mpl_toolkitsmod) {
detail::_interpreter::get();
PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
Py_DECREF(mpl_toolkits);
if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
axis3dmod = PyImport_Import(axis3d);
Py_DECREF(axis3d);
if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
}
assert(x.size() == y.size());
assert(y.size() == z.size());
// using numpy arrays
PyObject *xarray = detail::get_2darray(x);
PyObject *yarray = detail::get_2darray(y);
PyObject *zarray = detail::get_2darray(z);
// construct positional args
PyObject *args = PyTuple_New(3);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
PyTuple_SetItem(args, 2, zarray);
// Build up the kw args.
PyObject *kwargs = PyDict_New();
PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1));
PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1));
PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
detail::_interpreter::get().s_python_colormap, "coolwarm");
PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
it != keywords.end(); ++it) {
if (it->first == "linewidth" || it->first == "alpha") {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyFloat_FromDouble(std::stod(it->second)));
} else {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyString_FromString(it->second.c_str()));
}
}
PyObject *fig_args = PyTuple_New(1);
PyObject* fig = nullptr;
PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
PyObject *fig_exists =
PyObject_CallObject(
detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
if (!PyObject_IsTrue(fig_exists)) {
fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
detail::_interpreter::get().s_python_empty_tuple);
} else {
fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
fig_args);
}
Py_DECREF(fig_exists);
if (!fig) throw std::runtime_error("Call to figure() failed.");
PyObject *gca_kwargs = PyDict_New();
PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
PyObject *gca = PyObject_GetAttrString(fig, "gca");
if (!gca) throw std::runtime_error("No gca");
Py_INCREF(gca);
PyObject *axis = PyObject_Call(
gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
if (!axis) throw std::runtime_error("No axis");
Py_INCREF(axis);
Py_DECREF(gca);
Py_DECREF(gca_kwargs);
PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface");
if (!plot_surface) throw std::runtime_error("No surface");
Py_INCREF(plot_surface);
PyObject *res = PyObject_Call(plot_surface, args, kwargs);
if (!res) throw std::runtime_error("failed surface");
Py_DECREF(plot_surface);
Py_DECREF(axis);
Py_DECREF(args);
Py_DECREF(kwargs);
if (res) Py_DECREF(res);
}
template <typename Numeric>
void contour(const std::vector<::std::vector<Numeric>> &x,
const std::vector<::std::vector<Numeric>> &y,
const std::vector<::std::vector<Numeric>> &z,
const std::map<std::string, std::string> &keywords = {})
{
detail::_interpreter::get();
// using numpy arrays
PyObject *xarray = detail::get_2darray(x);
PyObject *yarray = detail::get_2darray(y);
PyObject *zarray = detail::get_2darray(z);
// construct positional args
PyObject *args = PyTuple_New(3);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
PyTuple_SetItem(args, 2, zarray);
// Build up the kw args.
PyObject *kwargs = PyDict_New();
PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
detail::_interpreter::get().s_python_colormap, "coolwarm");
PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyString_FromString(it->second.c_str()));
}
PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs);
if (!res)
throw std::runtime_error("failed contour");
Py_DECREF(args);
Py_DECREF(kwargs);
if (res) Py_DECREF(res);
}
template <typename Numeric>
void spy(const std::vector<::std::vector<Numeric>> &x,
const double markersize = -1, // -1 for default matplotlib size
const std::map<std::string, std::string> &keywords = {})
{
detail::_interpreter::get();
PyObject *xarray = detail::get_2darray(x);
PyObject *kwargs = PyDict_New();
if (markersize != -1) {
PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize));
}
for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyString_FromString(it->second.c_str()));
}
PyObject *plot_args = PyTuple_New(1);
PyTuple_SetItem(plot_args, 0, xarray);
PyObject *res = PyObject_Call(
detail::_interpreter::get().s_python_function_spy, plot_args, kwargs);
Py_DECREF(plot_args);
Py_DECREF(kwargs);
if (res) Py_DECREF(res);
}
#endif // WITHOUT_NUMPY
template <typename Numeric>
void plot3(const std::vector<Numeric> &x,
const std::vector<Numeric> &y,
const std::vector<Numeric> &z,
const std::map<std::string, std::string> &keywords =
std::map<std::string, std::string>(),
const long fig_number=0)
{
detail::_interpreter::get();
// Same as with plot_surface: We lazily load the modules here the first time
// this function is called because I'm not sure that we can assume "matplotlib
// installed" implies "mpl_toolkits installed" on all platforms, and we don't
// want to require it for people who don't need 3d plots.
static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
if (!mpl_toolkitsmod) {
detail::_interpreter::get();
PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
Py_DECREF(mpl_toolkits);
if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
axis3dmod = PyImport_Import(axis3d);
Py_DECREF(axis3d);
if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
}
assert(x.size() == y.size());
assert(y.size() == z.size());
PyObject *xarray = detail::get_array(x);
PyObject *yarray = detail::get_array(y);
PyObject *zarray = detail::get_array(z);
// construct positional args
PyObject *args = PyTuple_New(3);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
PyTuple_SetItem(args, 2, zarray);
// Build up the kw args.
PyObject *kwargs = PyDict_New();
for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyString_FromString(it->second.c_str()));
}
PyObject *fig_args = PyTuple_New(1);
PyObject* fig = nullptr;
PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
PyObject *fig_exists =
PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
if (!PyObject_IsTrue(fig_exists)) {
fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
detail::_interpreter::get().s_python_empty_tuple);
} else {
fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
fig_args);
}
if (!fig) throw std::runtime_error("Call to figure() failed.");
PyObject *gca_kwargs = PyDict_New();
PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
PyObject *gca = PyObject_GetAttrString(fig, "gca");
if (!gca) throw std::runtime_error("No gca");
Py_INCREF(gca);
PyObject *axis = PyObject_Call(
gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
if (!axis) throw std::runtime_error("No axis");
Py_INCREF(axis);
Py_DECREF(gca);
Py_DECREF(gca_kwargs);
PyObject *plot3 = PyObject_GetAttrString(axis, "plot");
if (!plot3) throw std::runtime_error("No 3D line plot");
Py_INCREF(plot3);
PyObject *res = PyObject_Call(plot3, args, kwargs);
if (!res) throw std::runtime_error("Failed 3D line plot");
Py_DECREF(plot3);
Py_DECREF(axis);
Py_DECREF(args);
Py_DECREF(kwargs);
if (res) Py_DECREF(res);
}
template<typename Numeric>
bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
{
assert(x.size() == y.size());
detail::_interpreter::get();
// using numpy arrays
PyObject* xarray = detail::get_array(x);
PyObject* yarray = detail::get_array(y);
// construct positional args
PyObject* args = PyTuple_New(2);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
// construct keyword args
PyObject* kwargs = PyDict_New();
for (std::map<std::string, std::string>::const_iterator it =
keywords.begin(); it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(),
PyString_FromString(it->second.c_str()));
}
PyObject* res = PyObject_Call(
detail::_interpreter::get().s_python_function_stem, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if (res)
Py_DECREF(res);
return res;
}
template< typename Numeric >
bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
{
assert(x.size() == y.size());
detail::_interpreter::get();
// using numpy arrays
PyObject* xarray = detail::get_array(x);
PyObject* yarray = detail::get_array(y);
// construct positional args
PyObject* args = PyTuple_New(2);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, yarray);
// construct keyword args
PyObject* kwargs = PyDict_New();
for (auto it = keywords.begin(); it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
}
PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if (res) Py_DECREF(res);
return res;
}
template< typename Numeric >
bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords)
{
assert(x.size() == y1.size());
assert(x.size() == y2.size());
detail::_interpreter::get();
// using numpy arrays
PyObject* xarray = detail::get_array(x);
PyObject* y1array = detail::get_array(y1);
PyObject* y2array = detail::get_array(y2);
// construct positional args
PyObject* args = PyTuple_New(3);
PyTuple_SetItem(args, 0, xarray);
PyTuple_SetItem(args, 1, y1array);
PyTuple_SetItem(args, 2, y2array);
// construct keyword args
PyObject* kwargs = PyDict_New();
for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
}
PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if(res) Py_DECREF(res);
return res;
}
template <typename Numeric>
bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r",
const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) {
PyObject* obj_x = PyFloat_FromDouble(x);
PyObject* obj_y = PyFloat_FromDouble(y);
PyObject* obj_end_x = PyFloat_FromDouble(end_x);
PyObject* obj_end_y = PyFloat_FromDouble(end_y);
PyObject* kwargs = PyDict_New();
PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str()));
PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width));
PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length));
PyObject* plot_args = PyTuple_New(4);
PyTuple_SetItem(plot_args, 0, obj_x);
PyTuple_SetItem(plot_args, 1, obj_y);
PyTuple_SetItem(plot_args, 2, obj_end_x);
PyTuple_SetItem(plot_args, 3, obj_end_y);
PyObject* res =
PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs);
Py_DECREF(plot_args);
Py_DECREF(kwargs);
if (res)
Py_DECREF(res);
return res;
}
template< typename Numeric>
bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b",
double alpha=1.0, bool cumulative=false)
{
detail::_interpreter::get();
PyObject* yarray = detail::get_array(y);
PyObject* kwargs = PyDict_New();
PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False);
PyObject* plot_args = PyTuple_New(1);
PyTuple_SetItem(plot_args, 0, yarray);
PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
Py_DECREF(plot_args);
Py_DECREF(kwargs);
if(res) Py_DECREF(res);
return res;
}
#ifndef WITHOUT_NUMPY
namespace detail {
inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out)
{
assert(type == NPY_UINT8 || type == NPY_FLOAT);
assert(colors == 1 || colors == 3 || colors == 4);
detail::_interpreter::get();
// construct args
npy_intp dims[3] = { rows, columns, colors };
PyObject *args = PyTuple_New(1);
PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr));
// construct keyword args
PyObject* kwargs = PyDict_New();
for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
{
PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
}
PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if (!res)
throw std::runtime_error("Call to imshow() failed");
if (out)
*out = res;
else
Py_DECREF(res);
}
} // namespace detail
inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
{
detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out);
}
inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
{
detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out);
}
#ifdef WITH_OPENCV
void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {})
{
// Convert underlying type of matrix, if needed
cv::Mat image2;
NPY_TYPES npy_type = NPY_UINT8;
switch (image.type() & CV_MAT_DEPTH_MASK) {
case CV_8U:
image2 = image;
break;
case CV_32F:
image2 = image;
npy_type = NPY_FLOAT;
break;
default:
image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels()));
}
// If color image, convert from BGR to RGB
switch (image2.channels()) {
case 3:
cv::cvtColor(image2, image2, CV_BGR2RGB);
break;
case 4:
cv::cvtColor(image2, image2, CV_BGRA2RGBA);
}
detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords);
}
#endif // WITH_OPENCV
#endif // WITHOUT_NUMPY
template<typename NumericX, typename NumericY>
bool scatter(const std::vector<NumericX>& x,
const std::vector<NumericY>& y,
const double s=1.0, // The marker size in points**2
const std::map<std::string, std::string> & keywords = {})
{
detail::_interpreter::get();
assert(x.size() == y.size());