-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpostProcess.py
executable file
·171 lines (147 loc) · 7.84 KB
/
postProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
#Code to generate a full shell of diffusion-weighted, eddy distorted images using FSL's possum, along with data that can be used to
#establish a ground truth.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Handle arguments (before imports so --help can be fast)
def str2bool(v):
#Function allows boolean arguments to take a wider variety of inputs
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
import argparse
parser = argparse.ArgumentParser(description="Tidy up the simulations.")
parser.add_argument("simulation_dir",help="Path to the simulation directory (output_dir of generateFileStructure.py)")
parser.add_argument("num_images",help='Number of volumes.',type=int)
parser.add_argument("--simulate_artefact_free",help='Run simulation on datasets without eddy-current and motion artefacts. Default=True.', type=str2bool, nargs='?',const=True,default=True)
parser.add_argument("--simulate_distorted",help='Run simulation datasets with eddy-current and motion artefacts. Default=False',type=str2bool, nargs='?',const=True,default=False)
parser.add_argument("--noise_levels",help="Set sigma for the noise level in the dataset. Can pass multiple values seperated by spaces.",nargs="+",type=float)
parser.add_argument("--interleave_factor",help="Set this if the simulation slice order has been interleaved.",type=int,default=1)
parser.add_argument("--signal_dropout",help="Set this to simulate signal dropout.",type=str2bool,nargs='?',const=True,default=False)
parser.add_argument("--bvals",help="Supply bvals to prevent signal dropout being addded to b=0 volumes.")
args=parser.parse_args()
#Imports
import os
from subprocess import call
import numpy as np
from Library import possumLib as pl
from dipy.io import read_bvals_bvecs
#Assign args
simDir = os.path.abspath(args.simulation_dir)
numImages = args.num_images
normalImages = args.simulate_artefact_free
motionAndEddyImages = args.simulate_distorted
if args.noise_levels == None:
noiseLevel = [0.0]
else:
noiseLevel = args.noise_levels
print(noiseLevel)
interleaveFactor = args.interleave_factor
if args.bvals != None:
bvals, _ = read_bvals_bvecs(
args.bvals,
None)
else:
#If no bval create artifical file with all b=1000, so signal dropout is applied to every volume.
bvals = (1000,)* numImages
def saveImage(simDir,saveImageDir,fileName):
call(["mv", simDir + "/image_abs.nii.gz", os.path.join(saveImageDir,fileName)])
def saveNoiseyImage(simDir,saveImageDir,fileName):
call(["mv", simDir + "/imageNoise_abs.nii.gz", os.path.join(saveImageDir,fileName)])
def convertImageToFloat(imageDir, fileName):
pathToImage = os.path.join(imageDir, fileName)
call(["fslmaths", pathToImage, pathToImage, "-odt", "float"])
def readSignal(signalPath):
fid = open(signalPath,"rb")
testval= np.fromfile(fid, dtype=np.uint32,count = 1)
dummy=np.fromfile(fid, dtype=np.uint32,count = 1)
nrows=np.fromfile(fid, dtype=np.uint32,count = 1)[0]
ncols=np.fromfile(fid, dtype=np.uint32,count = 1)[0]
signal=np.fromfile(fid,dtype=np.float64,count = nrows*ncols)
signal = np.reshape(signal,(nrows, ncols),order='F')
return signal
def writeSignal(fname,mat):
mvals = mat
fidin = open(fname,"w")
magicnumber=42
dummy=0
[nrows,ncols]=mat.shape
header = np.array([magicnumber,dummy,nrows,ncols])
header.astype(np.uint32).tofile(fidin)
mvals = np.reshape(mvals,[1,ncols*2],order='F')
mvals.astype(np.float64).tofile(fidin)
fidin.close()
def unInterleaveSignal(signal, numSlices, interleaveFactor):
[nrows,ncols]=signal.shape
signalUninterleaved = np.zeros((nrows,ncols))
counter = 0
entriesPerSlice = int(ncols/numSlices)
for i in range(interleaveFactor):
for j in range(i,numSlices,interleaveFactor):
startIndexOld = counter* entriesPerSlice
endIndexOld = (counter + 1) * entriesPerSlice -1
startIndex = j* entriesPerSlice
endIndex = (j + 1) * entriesPerSlice -1
signalUninterleaved[:,startIndex:endIndex] = signal[:,startIndexOld:endIndexOld]
counter = counter + 1
return signalUninterleaved
resultsDir = simDir+"/Results"
for direction in range(numImages):
if motionAndEddyImages == True:
simDirDirectionMotionAndEddy = simDir+"/DirectionMotionAndEddy"+str(direction)
if interleaveFactor > 1 or args.signal_dropout == True:
signal = readSignal(simDirDirectionMotionAndEddy+'/signal')
signalUninterleaved = unInterleaveSignal(signal,55,interleaveFactor)
if args.signal_dropout == True:
motion_level = pl.get_motion_level(simDirDirectionMotionAndEddy)
if int(bvals[direction]) > 50:
signalUninterleaved = pl.add_signal_dropout(signalUninterleaved,motion_level,55,72*86)
writeSignal(simDirDirectionMotionAndEddy+'/signalUninterleaved',signalUninterleaved)
else:
call(["cp",simDirDirectionMotionAndEddy+'/signal',simDirDirectionMotionAndEddy+'/signalUninterleaved'])
if normalImages == True:
simDirDirection = simDir+"/Direction"+str(direction)
if interleaveFactor > 1:
signal = readSignal(simDirDirection+'/signal')
signalUninterleaved = unInterleaveSignal(signal,55,interleaveFactor)
writeSignal(simDirDirection+'/signalUninterleaved',signalUninterleaved)
else:
call(["cp",simDirDirection+'/signal',simDirDirection+'/signalUninterleaved'])
#Generate noise
for sigma in noiseLevel:
if normalImages == True:
call(["systemnoise","-s",str(sigma),"-i",simDirDirection+"/signalUninterleaved","-o",simDirDirection+"/signalNoise"])
call(["signal2image","-i",simDirDirection+"/signalNoise","-p",simDirDirection+"/pulse","-o",simDirDirection+"/imageNoise","-a"])
if motionAndEddyImages == True:
call(["systemnoise","-s",str(sigma),"-i",simDirDirectionMotionAndEddy+"/signalUninterleaved","-o",simDirDirectionMotionAndEddy+"/signalNoise"])
call(["signal2image","-i",simDirDirectionMotionAndEddy+"/signalNoise","-p",simDirDirectionMotionAndEddy+"/pulse","-o",simDirDirectionMotionAndEddy+"/imageNoise","-a"])
#Save
if motionAndEddyImages == True:
saveNoiseyImage(simDirDirectionMotionAndEddy,resultsDir,"diff+eddy+motion_sigma{}_image{}.nii.gz".format(sigma,direction))
convertImageToFloat(resultsDir,"diff+eddy+motion_sigma{}_image{}.nii.gz".format(sigma,direction))
if normalImages == True:
saveNoiseyImage(simDirDirection,resultsDir,"diff_sigma{}_image{}.nii.gz".format(sigma,direction))
convertImageToFloat(resultsDir,"diff_sigma{}_image{}.nii.gz".format(sigma,direction))
#Merge
if motionAndEddyImages == True:
for sigma in noiseLevel:
callMergeNoise = "fslmerge -t " + resultsDir + "/diff+eddy+motion_sigma{} ".format(sigma)
callDelNoise = "rm "
for i in range(numImages):
callMergeNoise += resultsDir + "/diff+eddy+motion_sigma{}_image{}.nii.gz ".format(sigma,i)
callDelNoise += resultsDir + "/diff+eddy+motion_sigma{}_image{}.nii.gz ".format(sigma,i)
os.system(callMergeNoise)
os.system(callDelNoise)
if normalImages == True:
for sigma in noiseLevel:
callMergeNoise = "fslmerge -t " + resultsDir + "/diff_sigma{} ".format(sigma)
callDelNoise = "rm "
for i in range(numImages):
callMergeNoise += resultsDir + "/diff_sigma{}_image{}.nii.gz ".format(sigma,i)
callDelNoise += resultsDir + "/diff_sigma{}_image{}.nii.gz ".format(sigma,i)
os.system(callMergeNoise)
os.system(callDelNoise)