forked from crisie/RecurrentGaze
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
201 lines (168 loc) · 9.41 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# !/usr/bin/env python
# title :Train.py
# description :Main script to TRAIN the gaze estimation network
# author :Cristina Palmero
# date :30092018
# version :2.0
# usage :Example (see more @init_main):
# python3 Train.py -t FT_SM_NFEL5836GRU_fold3 -exp NFEL5836GRU -dp 0.3 -bs 8 -aug 1
# -lr 0.0001 -epochs 21 -gt "/Work/EYEDIAP/Annotations_final_exps/gt_cam_FT_S.txt"
# "/Work/EYEDIAP/Annotations_final_exps/gt_cam_FT_M.txt"
# -vgt "/Work/EYEDIAP/Annotations_final_exps/gtv_cam_FT_S.txt"
# "/Work/EYEDIAP/Annotations_final_exps/gtv_cam_FT_M.txt"
# -data "/Work/EYEDIAP/Annotations_final_exps/data_FT_S.txt"
# "/Work/EYEDIAP/Annotations_final_exps/data_FT_M.txt"
# -feats "/Work/EYEDIAP/Annotations_final_exps/face_features_FT_S.txt"
# "/Work/EYEDIAP/Annotations_final_exps/face_features_FT_M.txt"
# -test 2_A_FT_S 2_A_FT_M 3_A_FT_S 3_A_FT_M 8_A_FT_S 8_A_FT_M 16_A_FT_S 16_A_FT_M 16_B_FT_S 16_B_FT_M
# -p "/Work"
# notes : -
# python_version :3.5.5
# ==============================================================================
N_SEED = 32
import random as rn
import argparse
import pickle
from experiment_helper import *
from keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger
from keras import backend as K
from images_data_augmenter_seqaware import ImageDataAugmenter
def str2bool(v):
"""
Convert string to boolean
:param v: string
:return: boolean
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def init_main():
"""
Defines the type of input arguments expected.
Definition of each of them is included in "help" variable of each argument
:return: parsed input arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("-exp", "--experiment", dest="experiment", default="NFEL5836", help="Experiment name")
parser.add_argument("-dp", "--dropout", dest="dropout", type=float, default=0.3, help="Dropout value")
parser.add_argument("-aug", "--augmentation", dest="augmentation", type=str2bool, default=True,
help="True if Data augmentation is activated")
parser.add_argument("-bs", "--batch_size", dest="batch_size", type=int, default=64, help="Batch size")
parser.add_argument("-lr", "--learning_rate", dest="learning_rate",type=float, default=0.0001, help="Learning rate")
parser.add_argument("-epochs", "--epochs", dest="n_epochs", type=int, default=20, help="Number of epochs")
parser.add_argument("-data", "--data_file", dest="data_files", default=[], help="Data file", action="append",
nargs=2)
parser.add_argument("-gt", "--gt_files", dest="gt_files", default=[], help="Ground truth files", action="append",
nargs=2)
parser.add_argument("-vgt", "--vector_gt_files", dest="vector_gt_files", default=[],
help="Vector ground truth files", action="append", nargs=2)
parser.add_argument("-feats", "--face_features", dest="face_features_file", default=[], help="Face features file",
nargs=2)
parser.add_argument("-test", "--test_folders", dest="test_folders", default=[], help="Test folders",
action="append", nargs=10)
parser.add_argument("-vp", "--validation_participants", dest="val_parts", type=int, default=0,
help="Number of participants to perform validation on")
parser.add_argument("-mlb", "--max_look_back", dest="max_look_back", type=int, default=4,
help="Maximum number of frames to take into account before current frame, in sequence mode")
parser.add_argument("-t", "--title", dest="title", default="", help="Experiment description")
parser.add_argument("-p", "--path", dest="path", type=str, default="", help="Path")
parser.add_argument("-mp", "--multi_processing", dest="multi_processing", type=str2bool, default=False,
help="True if GPU multi processing is activated")
return parser.parse_args()
if __name__ == '__main__':
# Parse input arguments
print("Parsing arguments...")
args = init_main()
# Read data and ground truth (both 2D and 3D)
print("Reading input files...")
data, gt, vgt, _ = read_input(args.data_files, args.path, args.gt_files, args.vector_gt_files)
# Read face features
print("Reading face features...")
face_features = read_face_features_file(args.face_features_file)
# Get train-validation split
print("Splitting data in train and validation sets...")
train, validation = train_valtest_split(data, vgt, face_features, args.test_folders, args.val_parts)
# Get experiment details and methods
print("Get experiment and define associated model...")
experiment = ExperimentHelper.get_experiment(args.experiment)
print("Preparing data...")
variables = {'max_look_back': args.max_look_back}
train, validation, variables = experiment.prepare_data(train, validation, variables)
# Make sure that from this point on experiments are reproducible (not valid with multi_processing)
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(seed=N_SEED)
rn.seed(N_SEED)
augmenter = None
if args.augmentation:
print("Loading augmentation...")
# Define data augmenter
augmenter = ImageDataAugmenter(rotation_range=0,
width_shift_range=5, # pixels
height_shift_range=5, # pixels
zoom_range=[0.98, 1.02], # %
horizontal_flip=True,
illumination_range=[0.4, 1.75],
gaussian_noise_range=0.03)
print("Augmentation is on.")
print(augmenter) # Just checking
# Shuffle
print("Initiate data generators...")
train = unison_shuffled_copy(train)
print("Training: ", len(train.x))
experiment.init_data_gen_train(train, args.batch_size, augmenter, True, True)
if validation is not None:
validation = unison_shuffled_copy(validation)
print("Test: ", len(validation.x))
experiment.init_data_gen_val(validation, args.batch_size, None, False)
print("Define and compile model...")
experiment.define_model(args.dropout)
experiment.compile_model(args.learning_rate)
# Keras Callbacks
# Checkpoint model
# NOTE: With Lambda, used in LSTM model definition, model.save and model.to_json() do not work, so only
# weights checkpoints can be saved
if validation is not None:
filepath = os.path.join(args.path, "Results", str(experiment.base_model.__class__.__name__) +
"-{epoch:03d}-{val_loss:.5f}-" + str(args.experiment) + ".hdf5")
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False, period=7) # 21
else:
filepath = os.path.join(args.path, "Results", str(experiment.base_model.__class__.__name__) +
"-{epoch:03d}-{loss:.5f}-" + str(args.experiment) + ".hdf5")
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, period=1)
# Early stopping
earlystopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=55, verbose=1, mode='min')
# CSV logger
csvlogger = CSVLogger("log_" + str(args.experiment) + ".csv", append=True, separator=";")
# Earlystopping is only saved when evaluation on a validation set.
if validation is not None:
callbacks_list = [earlystopping, csvlogger, checkpoint]
else:
callbacks_list = [csvlogger, checkpoint]
# Fit model using Keras data generator
print("Start training...")
fit_args = dict(steps_per_epoch=np.ceil(len(train.x) / args.batch_size),
epochs=args.n_epochs, callbacks=callbacks_list)
if len(K.tensorflow_backend._get_available_gpus()) > 0 and args.multi_processing:
fit_args.update(dict(max_queue_size=10, workers=8, use_multiprocessing=True))
if validation is not None:
fit_args.update(dict(validation_data=experiment.val_data_generator,
validation_steps=np.ceil(len(validation.x) / args.batch_size)))
hist = experiment.model.fit_generator(experiment.train_data_generator, fit_args)
print("Saving model weights...")
# Save model weights
experiment.model.save(
os.path.join(args.path, "Results", str(args.experiment) + "_" + args.title + "_model.hdf5"), True)
# Save history
print("Saving history...")
with open(os.path.join(args.path, "Results", str(args.experiment) + '_' + args.title + "_hist.pickle"), 'wb') as f:
more = {'test_folders': args.test_folders, 'training_length': len(train.x), 'batch_size': args.batch_size}
if validation is not None:
more.update({'validation_participants': validation.parts, 'validation_length': len(validation.x)})
else:
more.update({'validation_participants': 0, 'validation_length': 0})
more.update(variables)
stats = [hist.history, hist.params, more]
pickle.dump(stats, f)