-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_geom.py
318 lines (263 loc) · 11.2 KB
/
make_geom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
This script builds a simple geometry
"""
import argparse
from math import log10
from mgga import MGGA
import numpy as np
import openmc
import sys
import json
def add_element(element,material,fraction,fraction_type):
to_add = openmc.Element(element)
to_add = to_add.expand(fraction,fraction_type)
for nuclide in to_add:
material.add_nuclide(nuclide[0],nuclide[1],percent_type=nuclide[2])
class openmc_problem():
def __init__(self):
self.materials = {}
self.model = None
self.num_x = 0
self.num_y = 0
self.x_bounds = []
self.y_bounds = []
self.x_planes = []
self.y_planes = []
self.cells = []
self.tallies = {}
def setup(self, num_x, x_bounds, num_y, y_bounds):
self.num_x = num_x
self.num_y = num_y
self.x_bounds = np.linspace(x_bounds[0], x_bounds[1], num_x)
self.y_bounds = np.linspace(y_bounds[0], y_bounds[1], num_y)
for i,x in enumerate(self.x_bounds):
plane = openmc.XPlane(x0=x, name = 'xplane_' + str(i))
self.x_planes.append(plane)
for i,y in enumerate(self.y_bounds):
plane = openmc.YPlane(y0=y, name = 'yplane_' + str(i))
self.y_planes.append(plane)
self.__build_model()
def __build_materials(self):
breeder = openmc.Material(name='Lithium')
breeder.set_density('g/cm3', 0.534)
add_element('Li',breeder,100,'ao')
self.materials[0] = breeder
multiplier = openmc.Material(name="Lead")
multiplier.set_density('g/cm3', 12.3)
add_element('Pb', multiplier, 100, 'ao')
self.materials[1] = multiplier
be = openmc.Material(name="Beryllium")
be.set_density('g/cm3', 1.85)
add_element('Be', be, 100, 'ao')
self.materials[2] = be
lithium6 = openmc.Material(name="lithium-6")
lithium6.set_density('g/cm3', 0.534)
lithium6.add_nuclide('Li6',100,'ao')
self.materials[3] = lithium6
lithium7 = openmc.Material(name="lithium-7")
lithium7.set_density('g/cm3', 0.534)
lithium7.add_nuclide('Li7',100,'ao')
self.materials[4] = lithium7
bismuth = openmc.Material(name="Bismuth")
bismuth.set_density('g/cm3', 9.747)
add_element('Bi',bismuth,100,'ao')
self.materials[5] = bismuth
def __build_tallies(self, flux_cells, tbr_cells):
neutron_filter = openmc.ParticleFilter('neutron', filter_id=1)
cell_filter = openmc.CellFilter(flux_cells, filter_id=2)
tbr_cell_filter = openmc.CellFilter(tbr_cells, filter_id=3)
tbr_tally = openmc.Tally(tally_id = 1, name="tbr")
tbr_tally.scores = ['(n,t)']
tbr_tally.estimator = 'tracklength'
tbr_tally.filters = [tbr_cell_filter, neutron_filter]
flux_tally = openmc.Tally(tally_id = 2, name="flux")
flux_tally.scores = ['flux']
flux_tally.estimator = 'tracklength'
flux_tally.filters = [cell_filter, neutron_filter]
flux_tally.triggers = [openmc.Trigger('rel_err',0.05)]
flux_tally.triggers[0].scores = ['flux']
tallies = openmc.Tallies([tbr_tally,flux_tally])
self.model.tallies = tallies
# generate the fitness for the current generation and
# index
def generate_fitness(self, directory, sp_name = "statepoint.10.h5"):
sp = openmc.StatePoint(directory + '/' + sp_name)
tbr = sp.get_tally(name = 'tbr')
cells = []
[cells.append(x.id) for x in self.cells]
tbr_data = tbr.get_slice(scores=['(n,t)'],filters=[openmc.CellFilter], filter_bins = [tuple(cells)])
tbr_ave = tbr_data.mean
# maximise tbr
fitness = sum(tbr_ave)[0][0]
sp.close()
return fitness
def assign_genome(self, genome):
idx = 0
for x in range(self.num_x-1):
for y in range(self.num_y-1):
# set the material given the position in genome
mat = self.materials[genome[idx]]
self.cells[idx].fill = mat
idx = idx + 1
# given the genome build the region of geometry
# to optimise
def build_geometry(self):
univ = openmc.Universe(name='optimisation')
cells = []
idx = 0
for x in range(self.num_x-1):
for y in range(self.num_y-1):
# set the material given the position in genome
#mat = self.materials[genome[idx]]
cell = openmc.Cell(region = +self.x_planes[x] & -self.x_planes[x+1] & +self.y_planes[y] & -self.y_planes[y+1])
cells.append(cell)
# increment index
idx = idx + 1
univ.add_cells(cells)
self.cells = cells
# tally the cells in the last x row
tally_cells = cells[-self.num_y:]
self.__build_tallies(tally_cells, cells)
return univ
# run specific settings
def __set_settings(self):
self.model.settings.run_mode = 'fixed source'
self.model.settings.batches = 10
self.model.settings.particles = 100000
# make the source spatial dist
x_dist = openmc.stats.Discrete([0.0],[1.0])
y_dist = openmc.stats.Uniform(a=self.y_planes[0].y0, b=self.y_planes[-1].y0)
z_dist = openmc.stats.Discrete([0.0],[1.0])
spatial = openmc.stats.multivariate.CartesianIndependent(x_dist, y_dist, z_dist)
# make the angular dist
angle_dist = openmc.stats.Monodirectional(reference_uvw = [1,0,0])
# make the energy dist
energy_dist = openmc.stats.Discrete([14.06e6],[1.0])
source = openmc.Source(space = spatial, angle = angle_dist, energy = energy_dist)
self.model.settings.source = source
# main build function
def __build_model(self):
self.model = openmc.model.Model()
self.__build_materials()
# build the region to optimise
optimisation = self.build_geometry()
# Create a cell filled with the lattice
inside_boundary = -self.y_planes[-1] & +self.y_planes[0] & -self.x_planes[-1] & +self.x_planes[0]
outside_boundary = +self.y_planes[-1] | -self.y_planes[0] | +self.x_planes[-1] | -self.x_planes[0]
main_cell = openmc.Cell(fill=optimisation, region=inside_boundary)
eou = openmc.Cell(region = outside_boundary)
# Finally, create geometry by providing a list of cells that fill the root
# universe
self.model.geometry = openmc.Geometry([main_cell,eou])
self.x_planes[0].boundary_type = 'vacuum'
self.x_planes[-1].boundary_type = 'vacuum'
self.y_planes[0].boundary_type = 'vacuum'
self.y_planes[-1].boundary_type = 'vacuum'
self.__set_settings()
# using slurm array job build description
def build_slurm(generation):
contents = []
contents.append('#!/bin/bash')
contents.append('#')
contents.append('#SBATCH --job-name=mgga')
contents.append('#SBATCH -A UKAEA-AP001-CPU')
contents.append('#SBATCH -p cclake')
contents.append('#SBATCH --nodes=1')
contents.append('#SBATCH --ntasks=56')
contents.append('#SBATCH --time=36:00:00')
contents.append('#SBATCH --output=array_%A-%a.out')
contents.append('#SBATCH --array=1-1000')
contents.append(' ')
contents.append('module purge')
contents.append('module load rhel7/default-ccl')
contents.append('module load openmpi/gcc/9.2/4.0.1')
contents.append(' ')
contents.append('cd $WORKDIR')
contents.append('# IDX should match the folders inside generation')
contents.append('IDX=$(($SLURM_ARRAY_TASK_ID - 1))')
contents.append('cd ' + str(generation) + '/$IDX')
contents.append('export OPENMC_CROSS_SECTIONS=/home/dc-davi4/openmc-data/fendl-3.1d-hdf5/cross_sections.xml')
contents.append('openmc')
contents.append('cd ..')
with open('mgga_openmc.slurm','w') as f:
f.writelines(s + '\n' for s in contents)
def write_population(population, generation):
data = {"population": [population]}
json_string = json.dumps(data)
jsonfile = open("population_" + str(generation) + ".json",'w')
jsonfile.write(json_string)
jsonfile.close()
def read_population(generation):
data = None
fileObject = open("population_" + str(generation) + ".json", "r")
jsonContent = fileObject.read()
data = json.loads(jsonContent)
return data["population"][0]
if __name__ == '__main__':
# Set up command-line arguments for generating/running the model
parser = argparse.ArgumentParser()
parser.add_argument('--generate')
parser.add_argument('--run', action='store_true')
parser.add_argument('--initialise', action='store_true')
parser.add_argument('--input')
args = parser.parse_args()
# MGGA class
mgga = MGGA()
if args.input:
f = open(args.input)
data = json.load(f)
mgga.seed = data["mgga_settings"]["seed"]
mgga.population_size = data["mgga_settings"]["population"]
mgga.generations = data["mgga_settings"]["generations"]
mgga.crossover_prob = data["mgga_settings"]["crossover_prob"]
mgga.mutation_prob = data["mgga_settings"]["mutation_prob"]
mgga.copy_prob = data["mgga_settings"]["copy_prob"]
mgga.chromosome_length = data["mgga_settings"]["chromosome_length"]
mgga.num_genes = data["mgga_settings"]["num_of_states"]
mgga.percentage_worst = data["mgga_settings"]["percentage_worst"]
mgga.tornament_size = data["mgga_settings"]["tornament_size"]
mgga.initialise()
f.close()
else:
print('No input specified, use --input')
sys.exit()
# initialise the first generation
if args.initialise:
mgga.fill_population()
openmc_problem = openmc_problem()
openmc_problem.setup(10,[0,100],10,[0,200])
for idx,i in enumerate(mgga.population):
openmc_problem.assign_genome(i)
openmc_problem.model.export_to_xml(directory='0/'+str(idx))
build_slurm(0)
write_population(mgga.population, 0)
# need to write a filename dependent population file!!
# generate the next generation
if args.generate:
generation = int(args.generate)
population = read_population(generation-1)
mgga.population = population
genomes = mgga.population
openmc_problem = openmc_problem()
openmc_problem.setup(10,[0,100],10,[0,200])
# loop over each of the genomes
fitness = []
for idx,i in enumerate(genomes):
# folder for the current problem
directory = str(generation-1) + '/' + str(idx)
fit = openmc_problem.generate_fitness(directory)
fitness.append(fit)
# set the fitness
mgga.fitness = fitness
print('max fitness: ' + str(max(fitness)))
print('min fitness: ' + str(min(fitness)))
mgga.sample_population()
for idx,i in enumerate(mgga.children):
openmc_problem.assign_genome(i)
openmc_problem.model.export_to_xml(directory=str(generation) + '/'+str(idx))
write_population(mgga.children,generation)
"""
# translate to a higher resolution
if args.translate:
genomes = mgga.population
"""