-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpico_training.py
891 lines (760 loc) · 43.6 KB
/
pico_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
#!/usr/bin/env python
# coding: utf-8
#
# While training is taking place, statistics on agent performance are available from Tensorboard. To launch it use:
#
# `tensorboard --logdir train_log`
# In[ ]:
#this should be the thing, right?
from __future__ import division
import gym
import numpy as np
import random
# import tensorflow as tf
# import tensorflow.contrib.layers as layers
import matplotlib.pyplot as plt
from od_mstar3 import cpp_mstar
from od_mstar3 import od_mstar
from od_mstar3.col_set_addition import OutOfTimeError,NoSolutionError
import threading
import time
import scipy.signal as signal
import os
import GroupLock
import multiprocessing
# get_ipython().run_line_magic('matplotlib', 'inline')
import mapf_gym as mapf_gym
import pickle
import imageio
from ACNetComm_old import ACNet
from tensorflow.python.client import device_lib
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF
import pdb
dev_list = device_lib.list_local_devices()
print(dev_list)
assert len(dev_list) > 1
# import ipdb
# ### Helper Functions
# In[ ]:
def make_gif(images, fname, duration=2, true_image=False,salience=False,salIMGS=None):
imageio.mimwrite(fname,images,subrectangles=True)
print("wrote gif")
# Copies one set of variables to another.
# Used to set worker network parameters to those of global network.
def update_target_graph(from_scope,to_scope):
from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope)
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
op_holder = []
for from_var,to_var in zip(from_vars,to_vars):
op_holder.append(to_var.assign(from_var))
return op_holder
def discount(x, gamma):
return signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
def good_discount(x, gamma):
return discount(x,gamma)
# ## Worker Agent
# In[ ]:
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
class Worker:
def __init__(self, game, metaAgentID, workerID, a_size, groupLock, max_episode):
self.workerID = workerID
self.env = game
self.metaAgentID = metaAgentID
self.name = "worker_"+str(workerID)
self.agentID = ((workerID-1) % num_workers) + 1
self.groupLock = groupLock
self.max_episode = max_episode
self.nextGIF = episode_count # For GIFs output
#Create the local copy of the network and the tensorflow op to copy global parameters to local network
self.local_AC = ACNet(self.name,a_size,trainer,True,GRID_SIZE,GLOBAL_NET_SCOPE)
# master_network = ACNet(GLOBAL_NET_SCOPE,a_size,None,False,GRID_SIZE,GLOBAL_NET_SCOPE) # Generate global network
self.pull_global = update_target_graph(GLOBAL_NET_SCOPE, self.name)
def synchronize(self):
#handy thing for keeping track of which to release and acquire
if(not hasattr(self,"lock_bool")):
self.lock_bool=False
self.groupLock.release(int(self.lock_bool),self.name)
self.groupLock.acquire(int(not self.lock_bool),self.name)
self.lock_bool=not self.lock_bool
def train(self, rollout, sess, gamma, bootstrap_value, rnn_state0, imitation=False):
global episode_count
if imitation:
rollout=np.array(rollout)
#we calculate the loss differently for imitation
#if imitation=True the rollout is assumed to have different dimensions:
#[o[0],o[1],optimal_actions, target_priority(if True)]
feed_dict={global_step:episode_count,
self.local_AC.inputs:np.stack(rollout[:,0]),
self.local_AC.goal_pos:np.stack(rollout[:,1]),
self.local_AC.optimal_actions:np.stack(rollout[:,2]),
self.local_AC.target_priority:np.stack(rollout[:,3]),
self.local_AC.message:np.stack(rollout[:,4]),
self.local_AC.state_in[0]:rnn_state0[0],
self.local_AC.state_in[1]:rnn_state0[1]
}
_,bc_l,pi_l,i_l,_=sess.run([self.local_AC.policy,self.local_AC.behavior_cloning_loss,self.local_AC.priority_loss,self.local_AC.imitation_loss,
self.local_AC.apply_imitation_grads],
feed_dict=feed_dict)
return bc_l,pi_l,i_l
# episode_buffer.append([s[0],a,r,s1,d,v[0,0],train_valid,pred_on_goal,int(on_goal),pred_blocking,int(blocking),message,s[1],train_val])
rollout = np.array(rollout)
observations = rollout[:,0]
goals=rollout[:,-2]
actions = rollout[:,1]
rewards = rollout[:,2]
values = rollout[:,5]
valids = rollout[:,6]
blockings = rollout[:,10]
message = rollout[:,11]
on_goals=rollout[:,8]
train_value = rollout[:,-1]
# Here we take the rewards and values from the rollout, and use them to
# generate the advantage and discounted returns. (With bootstrapping)
# The advantage function uses "Generalized Advantage Estimation"
self.rewards_plus = np.asarray(rewards.tolist() + [bootstrap_value])
discounted_rewards = discount(self.rewards_plus,gamma)[:-1]
self.value_plus = np.asarray(values.tolist() + [bootstrap_value])
advantages = rewards + gamma * self.value_plus[1:] - self.value_plus[:-1]
advantages = good_discount(advantages,gamma)
num_samples = min(EPISODE_SAMPLES,len(advantages))
sampleInd = np.sort(np.random.choice(advantages.shape[0], size=(num_samples,), replace=False))
# Update the global network using gradients from loss
# Generate network statistics to periodically save
feed_dict = {
global_step:episode_count,
self.local_AC.target_v:np.stack(discounted_rewards),
self.local_AC.inputs:np.stack(observations),
self.local_AC.goal_pos:np.stack(goals),
self.local_AC.message:np.stack(message),
self.local_AC.actions:actions,
self.local_AC.train_valid:np.stack(valids),
self.local_AC.advantages:advantages,
self.local_AC.train_value:train_value,
self.local_AC.target_blockings:blockings,
self.local_AC.target_on_goals:on_goals,
self.local_AC.state_in[0]:rnn_state0[0],
self.local_AC.state_in[1]:rnn_state0[1]
}
v_l,p_l,valid_l,e_l,g_n,v_n,b_l,og_l,_ = sess.run([self.local_AC.value_loss,
self.local_AC.policy_loss,
self.local_AC.valid_loss,
self.local_AC.entropy,
self.local_AC.grad_norms,
self.local_AC.var_norms,
self.local_AC.blocking_loss,
self.local_AC.on_goal_loss,
self.local_AC.apply_grads],
feed_dict=feed_dict)
return v_l/len(rollout), p_l/len(rollout), valid_l/len(rollout), e_l/len(rollout), b_l/len(rollout), og_l/len(rollout), g_n, v_n
def shouldRun(self, coord, episode_count):
if TRAINING:
return (not coord.should_stop())
else:
return (episode_count < NUM_EXPS)
def parse_path(self,path):
'''needed function to take the path generated from M* and create the
observations and actions for the agent
path: the exact path ouput by M*, assuming the correct number of agents
returns: the list of rollouts for the "episode":
list of length num_agents with each sublist a list of tuples
(observation[0],observation[1],optimal_action,reward)'''
result=[[] for i in range(num_workers)]
goals = self.env.getGoals()
#
agent_states=[]
for i in range(num_workers):
rnn_state = self.local_AC.state_init
agent_states.append(rnn_state)
#
for t in range(len(path[:-1])):
observations=[]
#
inputs = []
goal_pos = []
visible_agents = []
#
move_queue=list(range(num_workers))
for agent in range(1,num_workers+1):
# observations.append(self.env._observe(agent))
#
o = self.env._observe(agent)
observations.append(o)
inputs.append(o[0])
goal_pos.append(o[1])
#compute up to LSTM in parallel
h3_vec = sess.run([self.local_AC.h3],
feed_dict={self.local_AC.inputs:inputs,
self.local_AC.goal_pos:goal_pos})
h3_vec=h3_vec[0]
rnn_out=[]
#now go all the way past the lstm sequentially feeding the rnn_state
for a in range(0,num_workers):
rnn_state=agent_states[a]
lstm_output,state_out, pred_priority = sess.run([self.local_AC.rnn_out,self.local_AC.state_out,self.local_AC.priority],
feed_dict={self.local_AC.inputs:[inputs[a]],
self.local_AC.h3:[h3_vec[a]],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})
rnn_out.append(lstm_output[0])
agent_states[a]=state_out
self.env.world.resetMessgeBuffer(a+1)
self.env.world.setMessage(a+1, state_out[0][-1])
visible_agents.append(self.env.getVisibleAgents(a+1, 11))
#
steps=0
# extract implicit priority each step for all agents
while len(move_queue)>0:
steps+=1
i=move_queue.pop(0)
o=observations[i]
pos=path[t][i]
newPos=path[t+1][i]#guaranteed to be in bounds by loop guard
direction=(newPos[0]-pos[0],newPos[1]-pos[1])
a=self.env.world.getAction(direction)
state, reward, done, nextActions, on_goal, blocking, valid_action, priority=self.env._step((i+1,a),output_priority=True)
next_poss = path[t+1]
optimal_next_pos = []
# bottom-right goal
if goals[i][0]-pos[0] > 0 and goals[i][1] - pos[1] > 0:
optimal_next_pos = [(pos[0]+1, pos[1]), (pos[0], pos[1]+1)]
# bottom-left goal
elif goals[i][0] - pos[0] > 0 and goals[i][1] - pos[1] < 0:
optimal_next_pos = [(pos[0]+1, pos[1]), (pos[0], pos[1]-1)]
# up-left goal
elif goals[i][0] - pos[0] < 0 and goals[i][1] - pos[1] < 0:
optimal_next_pos = [(pos[0]-1, pos[1]), (pos[0], pos[1]-1)]
# up-right goal
elif goals[i][0] - pos[0] < 0 and goals[i][1] - pos[1] > 0:
optimal_next_pos = [(pos[0]-1, pos[1]), (pos[0], pos[1]+1)]
# bottom goal
elif goals[i][0] - pos[0] > 0:
optimal_next_pos = [(pos[0]+1, pos[1])]
# up goal
elif goals[i][0] - pos[0] < 0:
optimal_next_pos = [(pos[0]-1, pos[1])]
# left goal
elif goals[i][1] - pos[1] < 0:
optimal_next_pos = [(pos[0], pos[1]-1)]
# right goal
elif goals[i][1] - pos[1] > 0:
optimal_next_pos = [(pos[0], pos[1]+1)]
priority = False
# if stay in odrm*
if a==0:
if len(optimal_next_pos) == 0:
priority = True
elif a > 0:
if len(optimal_next_pos) == 1 and optimal_next_pos[0] == next_poss[i]:
priority = True
elif len(optimal_next_pos) ==2 and (optimal_next_pos[0] == next_poss[i] or optimal_next_pos[1] == next_poss[i]):
priority = True
self.env.world.setPriority(i+1, priority)
if steps>num_workers**2:
#if we have a very confusing situation where lots of agents move
#in a circle (difficult to parse and also (mostly) impossible to learn)
return None
if not valid_action:
#the tie must be broken here
move_queue.append(i)
continue
result[i].append([o[0],o[1],a,priority,[0 for i in range(512)]])
# construct decentralization communication according to extracted priority
for aID in range(1,num_workers+1):
level = self.env.world.getAgentLevel(aID)
if level == 1:
self.env.checkHighLevel(aID,visible_agents[aID-1])
for aID in range(1,num_workers+1):
level = self.env.world.getAgentLevel(aID)
if level == 0:
self.env.checkLowLevel(aID,visible_agents[aID-1])
for aID in range(1,num_workers+1):
level = self.env.world.getAgentLevel(aID)
if level == -1:
self.env.checkUndefinedLevel(aID,visible_agents[aID-1])
for aID in range(1,num_workers+1):
level = self.env.world.getAgentLevel(aID)
if level==1:
self.env.aggregateAndBoardcast(aID,visible_agents[aID-1])
for aID in range(1,num_workers+1):
self.env.reduceMessageBuffer(aID)
message = self.env.world.getAggregateMessage(aID)
result[aID-1][-1][-1] = message
return result
def work(self,max_episode_length,gamma,sess,coord,saver):
global episode_count, swarm_reward, episode_rewards, episode_lengths, episode_mean_values, episode_invalid_ops,episode_wrong_blocking #, episode_invalid_goals
global episode_total_move, episode_total_collision, episode_agent_collision, episode_success, episode_success_length, episode_success_total_move,episode_success_agent_collision, episode_success_total_collision
global SEED
total_steps, i_buf = 0, 0
episode_buffers, s1Values = [ [] for _ in range(NUM_BUFFERS) ], [ [] for _ in range(NUM_BUFFERS) ]
with sess.as_default(), sess.graph.as_default():
while self.shouldRun(coord, episode_count):
sess.run(self.pull_global)
episode_buffer, episode_values = [], []
episode_reward = episode_step_count = episode_inv_count = 0
d = False
# Initial state from the environment
if self.agentID==1:
# SEED += 1
# seed_everything(SEED)
self.env._reset(self.agentID)
print(f'{self.workerID} before synchronizing at 237 {episode_count}')
self.synchronize() # synchronize starting time of the threads
# print(f'{self.workerID} finish synchronizing at 235 {episode_count}')
validActions = self.env._listNextValidActions(self.agentID)
s = self.env._observe(self.agentID)
blocking = False
p=self.env.world.getPos(self.agentID)
on_goal = self.env.world.goals[p[0],p[1]]==self.agentID
# s = self.env._observe(self.agentID)
rnn_state = self.local_AC.state_init
rnn_state0 = rnn_state
priority = self.env.world.getPriority(self.agentID)
default_message = np.array([0 for i in range(512)])
RewardNb = 0
wrong_blocking = 0
wrong_on_goal=0
if self.agentID==1:
global demon_probs
demon_probs[self.metaAgentID]=np.random.rand()
print(f'{self.workerID} before synchronizing at 256 {episode_count}')
self.synchronize() # synchronize starting time of the threadss
# print(f'{self.workerID} finish synchronizing at 254 {episode_count}')
# reset swarm_reward (for tensorboard)
swarm_reward[self.metaAgentID] = 0
if episode_count<PRIMING_LENGTH or demon_probs[self.metaAgentID]<DEMONSTRATION_PROB:
#for the first PRIMING_LENGTH episodes, or with a certain probability
#don't train on the episode and instead observe a demonstration from M*
if self.workerID==1 and episode_count%100==0:
saver.save(sess, model_path+'/model-'+str(int(episode_count))+'.cptk')
global rollouts
rollouts[self.metaAgentID]=None
if(self.agentID==1):
world=self.env.getObstacleMap()
start_positions=tuple(self.env.getPositions())
goals=tuple(self.env.getGoals())
try:
# odrm*
mstar_path=cpp_mstar.find_path(world,start_positions,goals,2,5)
rollouts[self.metaAgentID]=self.parse_path(mstar_path)
print("solved",episode_count)
except OutOfTimeError:
#M* timed out
print("timeout",episode_count)
except NoSolutionError:
print("nosol????",episode_count,start_positions)
print(f'{self.workerID} before synchronizing at 287 {episode_count}')
self.synchronize() # synchronize threads
# print(f'{self.workerID} finish synchronizing at 280 {episode_count}')
if rollouts[self.metaAgentID] is not None:
bc_l,pi_l,i_l=self.train(rollouts[self.metaAgentID][self.agentID-1], sess, gamma, None, rnn_state0, imitation=True)
episode_count+=1./num_workers
if self.agentID==1:
summary = tf.Summary()
summary.value.add(tag='Losses/Behavior Cloning loss', simple_value=bc_l)
summary.value.add(tag='Losses/Priority loss', simple_value=pi_l)
summary.value.add(tag='Losses/Imitation loss', simple_value=i_l)
global_summary.add_summary(summary, int(episode_count))
global_summary.flush()
continue
continue
saveGIF = False
if OUTPUT_GIFS and self.workerID == 1 and ((not TRAINING) or (episode_count >= self.nextGIF)):
saveGIF = True
self.nextGIF =episode_count + 64
GIF_episode = int(episode_count)
episode_frames = [ self.env._render(mode='rgb_array',screen_height=900,screen_width=900) ]
while (not self.env.finished):
#Take an action using probabilities from policy network output.
a_dist,v,rnn_state,pred_blocking,pred_on_goal,pred_priority = sess.run([self.local_AC.policy,
self.local_AC.value,
self.local_AC.state_out,
self.local_AC.blocking,
self.local_AC.on_goal,
self.local_AC.priority],
feed_dict={self.local_AC.inputs:[s[0]],
self.local_AC.goal_pos:[s[1]],
self.local_AC.message:[default_message],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})
# communication
self.env.world.resetMessgeBuffer(self.agentID)
self.env.world.setMessage(self.agentID, rnn_state[0][-1])
# priority = pred_priority.flatten()[0] > 0.5
self.env.world.setPriority(self.agentID, pred_priority)
visible_agents = self.env.getVisibleAgents(self.agentID, 10)
self.synchronize() # synchronize threads
level = self.env.world.getAgentLevel(self.agentID)
if level == 1:
self.env.checkHighLevel(self.agentID,visible_agents)
self.synchronize() # synchronize threads
level = self.env.world.getAgentLevel(self.agentID)
if level == 0:
self.env.checkLowLevel(self.agentID,visible_agents)
self.synchronize() # synchronize threads
level = self.env.world.getAgentLevel(self.agentID)
if level == -1:
self.env.checkUndefinedLevel(self.agentID,visible_agents)
self.synchronize() # synchronize threads
level = self.env.world.getAgentLevel(self.agentID)
if level==1:
self.env.aggregateAndBoardcast(self.agentID,visible_agents)
self.synchronize() # synchronize threads
self.env.reduceMessageBuffer(self.agentID)
message = self.env.world.getAggregateMessage(self.agentID)
# message = default_message
self.synchronize() # synchronize threads
a_dist,v,rnn_state,pred_blocking,pred_on_goal,pred_priority = sess.run([self.local_AC.policy,
self.local_AC.value,
self.local_AC.state_out,
self.local_AC.blocking,
self.local_AC.on_goal,
self.local_AC.priority],
feed_dict={self.local_AC.inputs:[s[0]],
self.local_AC.goal_pos:[s[1]],
self.local_AC.message:[message],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})
if(not (np.argmax(a_dist.flatten()) in validActions)):
episode_inv_count += 1
train_valid = np.zeros(a_size)
train_valid[validActions] = 1
valid_dist = np.array([a_dist[0,validActions]])
valid_dist /= np.sum(valid_dist)
# priority = pred_priority.flatten()[0] > 0.5
if TRAINING:
if (pred_blocking.flatten()[0] < 0.5) == blocking:
wrong_blocking += 1
if (pred_on_goal.flatten()[0] < 0.5) == on_goal:
wrong_on_goal += 1
a = validActions[ np.random.choice(range(valid_dist.shape[1]),p=valid_dist.ravel()) ]
# if not priority:
# a = 0
train_val = 1.
else:
a = np.argmax(a_dist.flatten())
if a not in validActions or not GREEDY:
a = validActions[ np.random.choice(range(valid_dist.shape[1]),p=valid_dist.ravel()) ]
# if not priority:
# a = 0
train_val = 1.
_, r, _, _, on_goal,blocking,_,priority = self.env._step((self.agentID, a),episode=episode_count,output_priority=True)
print(f'{self.workerID} before synchronizing at 341 {episode_count}')
self.synchronize() # synchronize threads
# print(f'{self.workerID} finish synchronizing at 334 {episode_count}')
# Get common observation for all agents after all individual actions have been performed
s1 = self.env._observe(self.agentID)
validActions = self.env._listNextValidActions(self.agentID, a,episode=episode_count)
d = self.env.finished
if saveGIF:
episode_frames.append(self.env._render(mode='rgb_array',screen_width=900,screen_height=900))
# replay buffer content
episode_buffer.append([s[0],a,r,s1,d,v[0,0],train_valid,pred_on_goal,int(on_goal),pred_blocking,int(blocking),message,s[1],train_val])
episode_values.append(v[0,0])
episode_reward += r
s = s1
total_steps += 1
episode_step_count += 1
if r>0:
RewardNb += 1
if d == True:
print('\n{} Goodbye World. We did it!'.format(episode_step_count), end='\n')
else:
print('\n{} Hello World. We are trying!'.format(episode_step_count), end='\n')
# If the episode hasn't ended, but the experience buffer is full, then we
# make an update step using that experience rollout.
if TRAINING and (len(episode_buffer) % EXPERIENCE_BUFFER_SIZE == 0 or d):
# Since we don't know what the true final return is, we "bootstrap" from our current value estimation.
if len(episode_buffer) >= EXPERIENCE_BUFFER_SIZE:
episode_buffers[i_buf] = episode_buffer[-EXPERIENCE_BUFFER_SIZE:]
else:
episode_buffers[i_buf] = episode_buffer[:]
if d:
s1Values[i_buf] = 0
else:
s1Values[i_buf] = sess.run(self.local_AC.value,
feed_dict={self.local_AC.inputs:np.array([s[0]])
,self.local_AC.goal_pos:[s[1]]
,self.local_AC.state_in[0]:rnn_state[0]
,self.local_AC.state_in[1]:rnn_state[1]})[0,0]
if (episode_count-EPISODE_START) < NUM_BUFFERS:
i_rand = np.random.randint(i_buf+1)
else:
i_rand = np.random.randint(NUM_BUFFERS)
tmp = np.array(episode_buffers[i_rand])
while tmp.shape[0] == 0:
i_rand = np.random.randint(NUM_BUFFERS)
tmp = np.array(episode_buffers[i_rand])
v_l,p_l,valid_l,e_l,b_l,og_l,g_n,v_n = self.train(episode_buffers[i_rand],sess,gamma,s1Values[i_rand],rnn_state0)
i_buf = (i_buf + 1) % NUM_BUFFERS
rnn_state0 = rnn_state
episode_buffers[i_buf] = []
print(f'{self.workerID} before synchronizing at 397 {episode_count}')
self.synchronize() # synchronize threads
# print(f'{self.workerID} finish synchronizing at 390 {episode_count}')
# sess.run(self.pull_global)
if episode_step_count >= max_episode_length or d:
break
total_move, collision_total, collision_agent, collision_static = self.env.getMetrics()
cur_success = 0
if d:
cur_success = 1
episode_success_length[self.metaAgentID].append(episode_step_count)
episode_success_total_move[self.metaAgentID].append(total_move)
episode_success_agent_collision[self.metaAgentID].append(collision_agent)
episode_success_total_collision[self.metaAgentID].append(collision_total)
episode_lengths[self.metaAgentID].append(episode_step_count)
episode_mean_values[self.metaAgentID].append(np.nanmean(episode_values))
episode_invalid_ops[self.metaAgentID].append(episode_inv_count)
episode_wrong_blocking[self.metaAgentID].append(wrong_blocking)
episode_total_move[self.metaAgentID].append(total_move)
episode_total_collision[self.metaAgentID].append(collision_total)
episode_agent_collision[self.metaAgentID].append(collision_agent)
episode_success[self.metaAgentID].append(cur_success)
# Periodically save gifs of episodes, model parameters, and summary statistics.
if episode_count % EXPERIENCE_BUFFER_SIZE == 0 and printQ:
print(' ', end='\r')
print('{} Episode terminated ({},{})'.format(episode_count, self.agentID, RewardNb), end='\r')
swarm_reward[self.metaAgentID] += episode_reward
print(f'{self.workerID} before synchronizing at 415 {episode_count}')
self.synchronize() # synchronize threads
# print(f'{self.workerID} finish synchronizing at 408 {episode_count}')
episode_rewards[self.metaAgentID].append(swarm_reward[self.metaAgentID])
print(f'worker {self.workerID} finished episode {episode_count} INFO-{INFO}')
if not TRAINING:
mutex.acquire()
if episode_count < NUM_EXPS:
plan_durations[episode_count] = episode_step_count
if self.workerID == 1:
episode_count += 1
print('({}) Thread {}: {} steps, {:.2f} reward ({} invalids).'.format(episode_count, self.workerID, episode_step_count, episode_reward, episode_inv_count))
GIF_episode = int(episode_count)
mutex.release()
else:
# print(f'{self.workerID} before episode_count({episode_count}) added')
# mutex.acquire()
episode_count+=1./num_workers
if episode_count % SUMMARY_WINDOW == 0:
if episode_count % 100 == 0:
print ('Saving Model', end='\n')
saver.save(sess, model_path+'/model-'+str(int(episode_count))+'.cptk')
print ('Saved Model', end='\n')
SL = SUMMARY_WINDOW * num_workers
mean_reward = np.nanmean(episode_rewards[self.metaAgentID][-SL:])
mean_length = np.nanmean(episode_lengths[self.metaAgentID][-SL:])
mean_value = np.nanmean(episode_mean_values[self.metaAgentID][-SL:])
mean_invalid = np.nanmean(episode_invalid_ops[self.metaAgentID][-SL:])
mean_wrong_blocking = np.nanmean(episode_wrong_blocking[self.metaAgentID][-SL:])
mean_total_move = np.nanmean(episode_total_move[self.metaAgentID][-SL:])
mean_total_collision = np.nanmean(episode_total_collision[self.metaAgentID][-SL:])
mean_agent_collision = np.nanmean(episode_agent_collision[self.metaAgentID][-SL:])
mean_success = np.nanmean(episode_success[self.metaAgentID][-SL:])
mean_success_length = np.nanmean(episode_success_length[self.metaAgentID][-SL:])
mean_success_total_move = np.nanmean(episode_success_total_move[self.metaAgentID][-SL:])
mean_success_agent_collision = np.nanmean(episode_success_agent_collision[self.metaAgentID][-SL:])
mean_success_total_collision = np.nanmean(episode_success_total_collision[self.metaAgentID][-SL:])
current_learning_rate = sess.run(lr,feed_dict={global_step:episode_count})
summary = tf.Summary()
summary.value.add(tag='Perf/Learning Rate',simple_value=current_learning_rate)
summary.value.add(tag='Perf/Reward', simple_value=mean_reward)
summary.value.add(tag='Perf/Length', simple_value=mean_length)
summary.value.add(tag='Perf/Valid Rate', simple_value=(mean_length-mean_invalid)/mean_length)
summary.value.add(tag='Perf/Blocking Prediction Accuracy', simple_value=(mean_length-mean_wrong_blocking)/mean_length)
summary.value.add(tag='Perf/Total Move', simple_value=mean_total_move)
summary.value.add(tag='Perf/Total Collision', simple_value=mean_total_collision)
summary.value.add(tag='Perf/Agent Collision', simple_value=mean_agent_collision)
summary.value.add(tag='Perf/Success', simple_value=mean_success)
summary.value.add(tag='Perf/Success Length', simple_value=mean_success_length)
summary.value.add(tag='Perf/Success Total Move', simple_value=mean_success_total_move)
summary.value.add(tag='Perf/Success Agent Collision', simple_value=mean_success_agent_collision)
summary.value.add(tag='Perf/Success Total Collision', simple_value=mean_success_total_collision)
summary.value.add(tag='Losses/Value Loss', simple_value=v_l)
summary.value.add(tag='Losses/Policy Loss', simple_value=p_l)
summary.value.add(tag='Losses/Blocking Loss', simple_value=b_l)
summary.value.add(tag='Losses/On Goal Loss', simple_value=og_l)
summary.value.add(tag='Losses/Valid Loss', simple_value=valid_l)
summary.value.add(tag='Losses/Grad Norm', simple_value=g_n)
summary.value.add(tag='Losses/Var Norm', simple_value=v_n)
global_summary.add_summary(summary, int(episode_count))
global_summary.flush()
if printQ:
print('{} Tensorboard updated ({})'.format(episode_count, self.workerID), end='\r')
# mutex.release()
print('({}) Thread {}: {} steps).'.format(episode_count, self.workerID, episode_step_count))
if saveGIF:
# Dump episode frames for external gif generation (otherwise, makes the jupyter kernel crash)
time_per_step = 0.1
images = np.array(episode_frames)
if TRAINING:
make_gif(images, '{}/episode_{:d}_{:d}_{:.1f}.gif'.format(gifs_path,GIF_episode,episode_step_count,swarm_reward[self.metaAgentID]))
else:
make_gif(images, '{}/episode_{:d}_{:d}.gif'.format(gifs_path,GIF_episode,episode_step_count), duration=len(images)*time_per_step,true_image=True,salience=False)
if SAVE_EPISODE_BUFFER:
with open('gifs3D/episode_{}.dat'.format(GIF_episode), 'wb') as file:
pickle.dump(episode_buffer, file)
# ## Training
# In[ ]:
from tfdeterminism import patch
patch()
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
os.environ['HOROVOD_FUSION_THRESHOLD']='0'
SEED = 1804
seed_everything(SEED)
# Learning parameters
episode_count = 0
MAX_EPISODE = 20
EPISODE_START = episode_count
gamma = .95 # discount rate for advantage estimation and reward discounting
#moved network parameters to ACNet.py
EXPERIENCE_BUFFER_SIZE = 128
GRID_SIZE = 11 #the size of the FOV grid to apply to each agent
ENVIRONMENT_SIZE = (10,20)#(10,70) the total size of the environment (length of one side)
OBSTACLE_DENSITY = (0,0.3) #(0,0.5) range of densities
DIAG_MVMT = False # Diagonal movements allowed?
a_size = 5 + int(DIAG_MVMT)*4
SUMMARY_WINDOW = 10
NUM_META_AGENTS = 3
NUM_THREADS = 8 #int(multiprocessing.cpu_count() / (2 * NUM_META_AGENTS))
# max_episode_length = 256 * (NUM_THREADS//8)
max_episode_length = 256
NUM_BUFFERS = 1 # NO EXPERIENCE REPLAY int(NUM_THREADS / 2)
EPISODE_SAMPLES = EXPERIENCE_BUFFER_SIZE # 64
LR_Q = 2.e-5
ADAPT_LR = True
ADAPT_COEFF = 5.e-5 #the coefficient A in LR_Q/sqrt(A*steps+1) for calculating LR
load_model = False
RESET_TRAINER = False
gifs_path = 'gifs'
from datetime import datetime
TIMESTAMP = "{0:%Y-%m-%dT%H-%M/}".format(datetime.now())
GLOBAL_NET_SCOPE = 'global'
#Imitation options
PRIMING_LENGTH = 2500 #0 number of episodes at the beginning to train only on demonstrations
DEMONSTRATION_PROB = 0.5 # probability of training on a demonstration per episode
REWARD_MODIFIED = False
INFO=f'initTrain_Obs11_G1020_OD03_A8/ACNetCommold_full_Clip1000_LR5'
# INFO = 'comm-debug'
model_path = f'model/'+INFO
load_model_path = f'model/ACNetCommold_full_Clip1000_LR5_best'
train_path = f'train_log/'+INFO+'/'+TIMESTAMP
# Simulation options
FULL_HELP = False
OUTPUT_GIFS = False
SAVE_EPISODE_BUFFER = False
# Testing
TRAINING = True
GREEDY = False
NUM_EXPS = 100
MODEL_NUMBER = 313000
# Shared arrays for tensorboard
episode_rewards = [ [] for _ in range(NUM_META_AGENTS) ]
episode_lengths = [ [] for _ in range(NUM_META_AGENTS) ]
episode_mean_values = [ [] for _ in range(NUM_META_AGENTS) ]
episode_invalid_ops = [ [] for _ in range(NUM_META_AGENTS) ]
episode_wrong_blocking = [ [] for _ in range(NUM_META_AGENTS) ]
episode_total_move = [ [] for _ in range(NUM_META_AGENTS) ]
episode_total_collision = [ [] for _ in range(NUM_META_AGENTS) ]
episode_agent_collision = [ [] for _ in range(NUM_META_AGENTS) ]
episode_success = [ [] for _ in range(NUM_META_AGENTS) ]
episode_success_length = [ [] for _ in range(NUM_META_AGENTS) ]
episode_success_total_move = [ [] for _ in range(NUM_META_AGENTS) ]
episode_success_agent_collision = [ [] for _ in range(NUM_META_AGENTS) ]
episode_success_total_collision = [ [] for _ in range(NUM_META_AGENTS) ]
rollouts = [ None for _ in range(NUM_META_AGENTS)]
demon_probs=[np.random.rand() for _ in range(NUM_META_AGENTS)]
printQ = False # (for headless)
swarm_reward = [0]*NUM_META_AGENTS
# In[ ]:
tf.reset_default_graph()
print("Hello World")
if not os.path.exists(model_path):
os.makedirs(model_path)
config = tf.ConfigProto(allow_soft_placement = True)
config.gpu_options.allow_growth=True
# mutex = threading.Lock()
if not TRAINING:
plan_durations = np.array([0 for _ in range(NUM_EXPS)])
mutex = threading.Lock()
gifs_path += '_tests'
if SAVE_EPISODE_BUFFER and not os.path.exists('gifs3D'):
os.makedirs('gifs3D')
#Create a directory to save episode playback gifs to
if not os.path.exists(gifs_path):
os.makedirs(gifs_path)
with tf.device("/gpu:0"):
master_network = ACNet(GLOBAL_NET_SCOPE,a_size,None,False,GRID_SIZE,GLOBAL_NET_SCOPE) # Generate global network
# global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues')
# finetune_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues/finetune')
# pdb.set_trace()
global_step = tf.placeholder(tf.float32)
if ADAPT_LR:
#computes LR_Q/sqrt(ADAPT_COEFF*steps+1)
#we need the +1 so that lr at step 0 is defined
lr=tf.divide(tf.constant(LR_Q),tf.sqrt(tf.add(1.,tf.multiply(tf.constant(ADAPT_COEFF),global_step))))
# lr_ft=tf.divide(tf.constant(LR_Q_finetune),tf.sqrt(tf.add(1.,tf.multiply(tf.constant(ADAPT_COEFF),global_step))))
else:
lr=tf.constant(LR_Q)
# lr_ft=tf.constant(LR_Q_finetune)
trainer = tf.contrib.opt.NadamOptimizer(learning_rate=lr, use_locking=True)
# trainer_ft= tf.contrib.opt.NadamOptimizer(learning_rate=lr_ft,use_locking=True)
if TRAINING:
num_workers = NUM_THREADS # Set workers # = # of available CPU threads
else:
num_workers = NUM_THREADS
NUM_META_AGENTS = 1
gameEnvs, workers, groupLocks = [], [], []
n=1#counter of total number of agents (for naming)
for ma in range(NUM_META_AGENTS):
num_agents=NUM_THREADS
gameEnv = mapf_gym.MAPFEnv(num_agents=num_agents, DIAGONAL_MOVEMENT=DIAG_MVMT, SIZE=ENVIRONMENT_SIZE,
observation_size=GRID_SIZE,PROB=OBSTACLE_DENSITY, FULL_HELP=FULL_HELP)
gameEnvs.append(gameEnv)
# Create groupLock
workerNames = ["worker_"+str(i) for i in range(n,n+num_workers)]
groupLock = GroupLock.GroupLock([workerNames,workerNames])
groupLocks.append(groupLock)
# Create worker classes
workersTmp = []
for i in range(ma*num_workers+1,(ma+1)*num_workers+1):
workersTmp.append(Worker(gameEnv,ma,n,a_size,groupLock,MAX_EPISODE))
n+=1
workers.append(workersTmp)
global_summary = tf.summary.FileWriter(train_path)
saver = tf.train.Saver(max_to_keep=2)
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
if load_model == True:
print ('Loading Model...')
if not TRAINING:
with open(load_model_path+'/checkpoint', 'w') as file:
file.write('model_checkpoint_path: "model-{}.cptk"'.format(MODEL_NUMBER))
file.close()
ckpt = tf.train.get_checkpoint_state(load_model_path)
episode_count = 0
saver.restore(sess,ckpt.model_checkpoint_path)
print("episode_count set to ",episode_count)
if RESET_TRAINER:
trainer = tf.contrib.opt.NadamOptimizer(learning_rate=lr, use_locking=True)
# This is where the asynchronous magic happens.
# Start the "work" process for each worker in a separate thread.
worker_threads = []
for ma in range(NUM_META_AGENTS):
for worker in workers[ma]:
groupLocks[ma].acquire(0,worker.name) # synchronize starting time of the threads
worker_work = lambda: worker.work(max_episode_length,gamma,sess,coord,saver)
print("Starting worker " + str(worker.workerID))
t = threading.Thread(target=(worker_work))
t.start()
worker_threads.append(t)
print('main get a ______________________________________')
coord.join(worker_threads)
print('main get b ______________________________________')
if not TRAINING:
print([np.mean(plan_durations), np.sqrt(np.var(plan_durations)), np.mean(np.asarray(plan_durations < max_episode_length, dtype=float))])
# In[ ]: