-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
333 lines (302 loc) · 21.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Deformable Neural Radiance Fields creates free-viewpoint portraits (nerfies) from casually captured videos.">
<meta name="keywords" content="Nerfies, D-NeRF, NeRF">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>AAMAS 2024 Tutorial: Reinforcement Learning for Operations Research: Unlocking New Possibilities</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-2 publication-title">
<span style="font-size: 80%">AAMAS 2024 Tutorial:</span><br />
Reinforcement Learning for Operations Research: Unlocking New Possibilities
</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<table>
<tr>
<!-- <th scope="row">TR-7</th> -->
<td width="25%" style="text-align: center; padding: 3px"><img width="150px" height="150px" src="static/imgs/profile_jjsheng.jpeg"></td>
<td width="25%" style="text-align: center; padding: 3px"><img width="150px" height="150px" src="static/imgs/profile_yhua.jpeg"></td>
<td width="25%" style="text-align: center; padding: 3px"><img width="150px" height="150px" src="static/imgs/profile_whli.jpeg"></td>
<td width="25%" style="text-align: center; padding: 3px"><img width="150px" height="150px" src="static/imgs/profile_xfwang.jpeg"></td>
</tr>
<tr>
<!-- <th scope="row">TR-7</th> -->
<td width="25%" style="text-align: center"><a href="https://akariasai.github.io/" style="border-radius: 50%">Junjie Sheng</a><sup>1</sup>,</td>
<td width="25%" style="text-align: center"><a href="https://shmsw25.github.io/" style="border-radius: 50%">Yun Hua</a><sup>1</sup>,</td>
<td width="25%" style="text-align: center"><a href="https://ewanlee.weebly.com/" style="border-radius: 50%">Wenhao Li</a><sup>2</sup>,</td>
<td width="25%" style="text-align: center"><a href="https://xfwang87.github.io/" style="border-radius: 50%">Xiangfeng Wang</a><sup>1</sup></td>
</tr>
</table>
<!-- <a href="https://akariasai.github.io/">Akari Asai</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://shmsw25.github.io/">Sewon Min</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://www.cs.princeton.edu/~zzhong/">Zexuan Zhong</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://www.cs.princeton.edu/~danqic/">Danqi Chen</a><sup>2</sup>, -->
</span>
</div>
<div class="is-size-6 publication-authors">
<span class="author-block"><sup>1</sup>East China Normal University,</span>
<span class="author-block"><sup>2</sup>The Chinese University of Hong Kong, Shenzhen</span>
</div>
<br />
<div class="is-size-5 publication-authors">
<b>Tuesday May 7 14:00 - 18:00 (NZST) @ Grafton, Auckland </b>
</div>
<div class="is-size-5 publication-authors">
QnA: <a href="https://bit.ly/rl4or-tutorial" target="_blank"><b>https://bit.ly/rl4or-tutorial</b></a>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">About this tutorial</h2>
<div class="content has-text-justified">
<!--<p>
Language models (LMs) such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2022) have shown impressive abilities in a range of natural language processing (NLP) tasks.
However, relying solely on their parameters to encode a wealth of world knowledge requires a prohibitively large number of parameters and hence massive computing, and they often struggle to learn long-rail knowledge (Roberts et al., 2020; Kandpal et al., 2022; Mallen et al., 2022).
Moreover, these parametric LMs are fundamentally incapable of adapting over time (De Cao et al., 2021; Lazaridou et al., 2021; Kasai et al., 2022), often hallucinate (Shuster et al., 2021), and may leak private data from the
training corpus (Carlini et al., 2021). To overcome these limitations, there has been growing interest in retrieval-based LMs (Guu et al., 2020; Khandelwal et al., 2020; Borgeaud et al., 2022; Zhong et al., 2022; Izacard et al., 2022b; Min et al., 2022),
which incorporate a non-parametric datastore (e.g., text chunks from an external corpus) with their parametric counterparts. Retrieval-based LMs can outperform LMs without retrieval by a large margin with much fewer parameters (Mallen et al., 2022), can update their knowledge by replacing their retrieval corpora (Izacard et al., 2022b), and provide citations for users to easily verify and evaluate the predictions (Menick et al., 2022; Bohnet et al., 2022).
</p>
<p>
In this tutorial, we aim to provide a comprehensive and coherent overview of recent
advances in retrieval-based LMs. We will start
by first providing preliminaries covering the foundations of LM (e.g., masked LMs, autoregressive LMs) and retrieval systems (e.g., nearest-neighbor search methods widely used in neural retrieval systems; Karpukhin et al. 2020). We will then focus
on recent progress in architectures, learning approaches, and applications of retrieval-based LMs.
</p>-->
<p>
This half-day tutorial is meticulously crafted to usher participants into the
dynamic intersection of reinforcement learning (RL) and operations research (OR).
Our aim is to unfold the immense potential of RL in addressing a broad spectrum of OR challenges,
especially for cloud resource scheduling and multi-agent pathfinding.
This enriching journey will navigate through key areas including the scope of OR, the synergy between RL and OR,
diverse industry case studies (including Huawei Cloud and Geekplus Inc.),
and pioneering future directions in both realms.
Participants will be immersed in a hands-on learning environment, engaging in interactive sessions
and comprehensive case studies.
This experience is designed to equip attendees with the skills to apply RL strategies
to real-world OR problems effectively.
The tutorial caters specifically to RL professionals and enthusiasts eager
to expand their horizons into the vast domain of OR.
By the conclusion of this tutorial, attendees will not only develop a deep appreciation for
the diversity of OR problems but also acquire the capability to devise and implement innovative RL solutions.
We encourage an environment of active engagement, inviting attendees to partake
in discussions and share their experiences and perspectives at the confluence of RL and OR.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Paper video. -->
<!--/ Paper video. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Schedule</h2>
<p>
Our tutorial will be held on May 7 (all the times are based on NZST = New Zealand local time).
<em>Slides may be subject to updates.</em>
</p>
<div class="content has-text-justified">
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}
.tg .tg-0lax{text-align:left;vertical-align:top}
</style>
<table class="tg">
<thead>
<tr>
<th class="tg-0pky">Time</th>
<th class="tg-0lax">Section</th>
<th class="tg-0lax">Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-0lax">14:00—14:55</td>
<td class="tg-0lax">Section 1: Introduction, Definition & Preliminaries <a href="./slides/tutorial-rl4or-part1-intro.pdf" target='_blank'>[Slides]</a></td>
<td class="tg-0lax">Xiangfeng</td>
</tr>
<tr>
<td class="tg-0lax">14:55—15:55</td>
<td class="tg-0lax">Section 2: Reinforcement Learning for VM Scheduling <a href="./slides/utorial-rl4or-part2-vm-scheduling.pdf" target='_blank'>[Slides]</a></td>
<td class="tg-0lax">Junjie</td>
</tr>
<tr>
<td class="tg-0lax">15:55—16:00</td>
<td class="tg-0lax">Q & A Session I</td>
<td class="tg-0lax"></td>
</tr>
<tr>
<td class="tg-0lax">16:00—16:30</td>
<td class="tg-0lax">Coffee break</td>
<td class="tg-0lax"></td>
</tr>
<tr>
<td class="tg-0lax">16:30—17:30</td>
<td class="tg-0lax">Section 3: Reinforcement Learning for Multi-Agent Pathfinding <a href="./slides/utorial-rl4or-part3-mapf.pdf" target='_blank'>[Slides]</a></td>
<td class="tg-0lax">Wenhao</td>
</tr>
<tr>
<td class="tg-0lax">17:30—17:40</td>
<td class="tg-0lax">Q & A Session II</td>
<td class="tg-0lax"></td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<!-- Concurrent Work. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Reading List</h2>
<br />
<h3 class="title is-5">Section 1: Introduction</h3>
<ul>
<li><a href="https://www.nature.com/articles/s41586-023-06924-6">Mathematical discoveries from program search with large language models.</a> (Romera-Paredes et al., 2023)</li>
<li><a href="https://arxiv.org/abs/2402.14083">Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping.</a> (Lehnert et al., 2024)</li>
<li><a href="https://arxiv.org/abs/2310.19046">Large Language Models as Evolutionary Optimizers.</a> (Liu et al., 2023)</li>
<li><a href="https://arxiv.org/abs/2401.03244">Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process.</a> (Fan et al., 2024)</li>
<li><a href="https://arxiv.org/abs/2312.03290">Can Language Agents Approach the Performance of RL? An Empirical Study On OpenAI Gym.</a> (Sheng et al., 2023)</li>
<li><a href="https://arxiv.org/abs/2303.04129">Foundation models for decision making: Problems, methods, and opportunities.</a> (Yang et al., 2023)</li>
<li><a href="https://arxiv.org/abs/2402.17139">Video as the New Language for Real-World Decision Making.</a> (Du et al., 2024)</li>
</ul>
<br />
<h3 class="title is-5">Section 2: VM Scheduling</h3>
<ul>
<li><a href="https://dl.acm.org/doi/abs/10.1016/j.patcog.2021.108254"><b>Learning to schedule multi-NUMA virtual machines via reinforcement learning</b></a> (Sheng et al., 2022)</li>
<li><a href="https://arxiv.org/abs/2207.06272"><b>Hindsight Learning for MDPs with Exogenous Inputs</b></a> (Sinclair et al., 2022)</li>
<li><a href="https://www.nature.com/articles/s41586-023-06924-6"><b>Mathematical discoveries from program search with large language models</b></a> (Romera-Paredes et al., 2023)</li>
<li><a href="https://arxiv.org/abs/2211.11759"><b>Learning Cooperative Oversubscription for Cloud by Chance-Constrained Multi-Agent Reinforcement Learning</b></a> (Sheng et al., 2023)</li>
</ul>
<br />
<h3 class="title is-5">Section 3: Multi-Agent Pathfinding</h3>
<ul>
<li><a href="https://ieeexplore.ieee.org/document/6974464">Multi-agent path planning in unknown environment with reinforcement learning and neural network</a> (Cruz et al. 2014)</li>
<li><a href="https://arxiv.org/abs/2012.09134">Multi-agent navigation based on deep reinforcement learning and traditional pathfinding algorithm</a> (Qiu et al. 2020)</li>
<li><a href="https://arxiv.org/abs/1809.03531">PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning</a> (PRIMAL (Sartoretti el al. 2019))</li>
<li><a href="https://arxiv.org/abs/2005.05420">Mobile Robot Path Planning in Dynamic Environments Through Globally Guided Reinforcement Learning</a> (G2RL (Wang et al. 2020))</li>
<li><a href="https://arxiv.org/abs/2007.15724">MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments</a> (MAPPER (Liu et al. 2020))</li>
<li><a href="https://arxiv.org/abs/2010.08184">PRIMAL2: Pathfinding via Reinforcement and Imitation Multi-Agent Learning -- Lifelong</a> (PRIMAL2 (Damani et al. 2021))</li>
<li><a href="https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2020.0024">Multi-robot path planning based on a deep reinforcement learning DQN algorithm</a> (Yang, et al. 2020)</li>
<li><a href="https://arxiv.org/abs/2106.11365">Distributed Heuristic Multi-Agent Path Finding with Communication</a> (DHC (Ma et al. 2021))</li>
<li><a href="https://arxiv.org/abs/2108.06148">Q-Mixing Network for Multi-Agent Pathfinding in Partially Observable Grid Environments</a> (Davydov et al. 2021)</li>
<li><a href="https://arxiv.org/abs/2109.05413">Learning Selective Communication for Multi-Agent Path Finding</a> (DCC (Ma et al. 2021))</li>
<li><a href="https://arxiv.org/abs/2202.03634">Multi-Agent Path Finding with Prioritized Communication Learning</a> (PICO (Li et al. 2022))</li>
<li><a href="https://arxiv.org/abs/2110.00760">AB-Mapper: Attention and BicNet based Multi-agent Path Planning for Dynamic Environment</a> (AB-MAPPER (Guan et al. 2021))</li>
<li><a href="https://ieeexplore.ieee.org/document/9532001">Hybrid Policy Learning for Multi-Agent Pathfinding</a> (Skrynnik et al. 2021)</li>
<li><a href="https://arxiv.org/abs/2012.05893">Flatland-RL : Multi-Agent Reinforcement Learning on Trains</a> (Flatland-RL (Mohanty et al. 2020))</li>
<li><a href="https://ieeexplore.ieee.org/document/10004303">Multi-Agent Pathfinding for Deadlock Avoidance on Rotational Movements</a> (MAPF-ROT (Chan et al. 2022))</li>
<li><a href="https://www.ifaamas.org/Proceedings/aamas2020/pdfs/p2077.pdf">Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding</a> (Zhang et al. 2020)</li>
<li><a href="https://ideas.repec.org/a/taf/tprsxx/v61y2023i1p65-80.html">Anti-conflict AGV path planning in automated container terminals based on multi-agent reinforcement learning</a> (Hu et al. 2023)</li>
<li><a href="https://arxiv.org/abs/2303.00605">SCRIMP: Scalable Communication for Reinforcement- and Imitation-Learning-Based Multi-Agent Pathfinding</a> (SCRIMP (Wang et al. 2023))</li>
<li><a href="https://ieeexplore.ieee.org/iel7/10190990/10190992/10191932.pdf">Curriculum Learning Based Multi-Agent Path Finding for Complex Environments</a> (CPL (Zhao et al. 2023))</li>
<li><a href="https://arxiv.org/abs/2312.15908">Decentralized Monte Carlo Tree Search for Partially Observable Multi-Agent Pathfinding</a> (MATS-LP (Skrynnik et al. 2023))</li>
<li><a href="https://ieeexplore.ieee.org/document/9896761/">Multiagent Path Finding Using Deep Reinforcement Learning Coupled With Hot Supervision Contrastive Loss</a> (Chen et al. 2023b)</li>
<li><a href="https://proceedings.mlr.press/v157/knippenberg21a.html">Time-Constrained Multi-Agent Path Finding in Non-Lattice Graphs with Deep Reinforcement Learning</a> (Knippenberg et al. 2021)</li>
<li><a href="https://arxiv.org/abs/2307.02691">SACHA: Soft Actor-Critic With Heuristic-Based Attention for Partially Observable Multi-Agent Path Finding</a> (SACHA (Lin et al. 2023))</li>
<li><a href="https://ieeexplore.ieee.org/document/10032100/">Transformer-Based Imitative Reinforcement Learning for Multirobot Path Planning</a> (Chen et al. 2023a)</li>
<li><a href="https://ojs.aaai.org/index.php/AAAI/article/view/26951">Towards Deployment-Efficient and Collision-Free Multi-Agent Path Finding (Student Abstract)</a> (Chen et al. 2023c)</li>
<li><a href="https://ieeexplore.ieee.org/document/10342261">HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding</a> (HELSA (Song et al. 2023))</li>
<li><a href="https://arxiv.org/abs/2310.01207">Learn to Follow: Decentralized Lifelong Multi-Agent Pathfinding via Planning and Learning</a> (Follower (Skrynnik et al. 2023))</li>
<li><a href="https://dl.acm.org/doi/10.5555/3635637.3663063">Attention-based Priority Learning for Limited Time Multi-Agent Path Finding</a> (S2AN (Yang et al. 2024))</li>
<li><a href="https://arxiv.org/abs/2310.08350">ALPHA: Attention-based Long-horizon Pathfinding in Highly-structured Areas</a> (ALPHA (He et al. 2023))</li>
<li><a href="https://journals.sagepub.com/doi/abs/10.1177/0278364920916531">Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios</a> (Fan et al. 2020)</li>
<li><a href="https://css.paperplaza.net/images/temp/CDC/files/0613.pdf">Optimizing Field-of-View for Multi-Agent Path Finding via Reinforcement Learning: A Performance and Communication Overhead Study</a> (Cheng et al. 2023)</li>
<li><a href="https://arxiv.org/abs/2401.05860">Confidence-Based Curriculum Learning for Multi-Agent Path Finding</a> (CACTUS (Phan et al. 2024))</li>
<li><a href="https://arxiv.org/abs/2309.10275">Optimizing Crowd-Aware Multi-Agent Path Finding through Local Broadcasting with Graph Neural Networks</a> (CRAMP (Pham et al. 2024))</li>
<li><a href="https://ieeexplore.ieee.org/document/10236574">When to Switch: Planning and Learning for Partially Observable Multi-Agent Pathfinding.</a> (Skrynnik et al. 2023)</li>
</ul>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{ rl4or-tutorial,
author = { Sheng, Junjie and Hua, Yun and Li, Wenhao and Wang, Xiangfeng },
title = { AAMAS 2024 Tutorial: Reinforcement Learning for Operations Research: Unlocking New Possibilities },
journal = { AAMAS 2024 },
year = { 2024 },
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link" href="https://github.com/ACL2023-Retrieval-LM" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>