-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathar_python3_opencv4.py
234 lines (169 loc) · 6.7 KB
/
ar_python3_opencv4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
"""Augmented Reality with Python 3 and OpenCV 4.2
"""
__author__ = "ma. fernanda rodriguez r."
__email__ = "[email protected]"
__created__ = "Thu 14 May 2020 11:40:54 -0300"
__modified__ = "Thu 29 May 2020 15:13:00 -0300"
import cv2
import math
import threading
import numpy as np
import matplotlib.pyplot as plt
from objloader_simple import *
from collections import deque
class VideoCapture:
"""bufferless VideoCapture
"""
def __init__(self, name, res=(320, 240)):
self.cap = cv2.VideoCapture(name)
self.cap.set(3, res[0])
self.cap.set(4, res[1])
self.q = deque()
self.status = "init"
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
while self.status == "init":
pass
assert self.status == "capture", "Failed to open capture"
def _reader(self):
"""read frames as soon as they are available, keeping only most recent one
"""
while True:
ret, frame = self.cap.read()
if not ret:
print("[error] ret")
break
self.q.append(frame)
self.status = "capture"
while len(self.q) > 1:
self.q.popleft()
self.status = "failed"
def read(self):
return self.q[-1]
def release(self):
self.cap.release()
def projection_matrix(camera_parameters, homography):
"""
From the camera calibration matrix and the estimated homography
compute the 3D projection matrix
"""
homography = homography * (-1)
rot_and_transl = np.dot(np.linalg.inv(camera_parameters), homography)
col_1 = rot_and_transl[:, 0]
col_2 = rot_and_transl[:, 1]
col_3 = rot_and_transl[:, 2]
# Normalize vectors
l = math.sqrt(np.linalg.norm(col_1, 2) * np.linalg.norm(col_2, 2))
rot_1 = col_1 / l
rot_2 = col_2 / l
translation = col_3 / l
# Compute the orthonormal basis
c = rot_1 + rot_2
p = np.cross(rot_1, rot_2)
d = np.cross(c, p)
rot_1 = np.dot(
c / np.linalg.norm(c, 2) + d / np.linalg.norm(d, 2), 1 / math.sqrt(2)
)
rot_2 = np.dot(
c / np.linalg.norm(c, 2) - d / np.linalg.norm(d, 2), 1 / math.sqrt(2)
)
rot_3 = np.cross(rot_1, rot_2)
# Compute the 3D projection matrix from the model to the current frame
projection = np.stack((rot_1, rot_2, rot_3, translation)).T
return np.dot(camera_parameters, projection)
def render(frame, obj, projection, referenceImage, scale3d, color=False):
"""
Render a loaded obj model into the current video frame
"""
vertices = obj.vertices
scale_matrix = np.eye(3) * scale3d
h, w = referenceImage.shape
for face in obj.faces:
face_vertices = face[0]
points = np.array([vertices[vertex - 1] for vertex in face_vertices])
points = np.dot(points, scale_matrix)
# render model in the middle of the reference surface. To do so,
# model points must be displaced
points = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])
dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection)
framePts = np.int32(dst)
cv2.fillConvexPoly(frame, framePts, (137, 27, 211))
return frame
def main():
# ============== Read data ==============
# Load 3D model from OBJ file
obj = OBJ("./models/chair.obj", swapyz=True)
# Scale 3D model
scale3d = 8
# Matrix of camera parameters
camera_parameters = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]])
# Minimum number of matches
MIN_MATCHES = 15
# ============== Reference Image ==============
# Load reference image and convert it to gray scale
referenceImage = cv2.imread("./img/referenceImage.jpg", 0)
# ================== Recognize ================
# Initiate ORB detector
orb = cv2.ORB_create()
# create brute force matcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Compute model keypoints and its descriptors
referenceImagePts, referenceImageDsc = orb.detectAndCompute(referenceImage, None)
# =============== Source Images ==============
# Init video capture (load the source image)
cap = VideoCapture(0)
while True:
# read the current frame
frame = cap.read()
# ============== Recognize =============
# Compute scene keypoints and its descriptors
sourceImagePts, sourceImageDsc = orb.detectAndCompute(frame, None)
# ============== Matching =============
# Match frame descriptors with model descriptors
matches = bf.match(referenceImageDsc, sourceImageDsc)
# Sort them in the order of their distance
matches = sorted(matches, key=lambda x: x.distance)
# ============== Homography =============
# Apply the homography transformation if we have enough good matches
if len(matches) > MIN_MATCHES:
# Get the good key points positions
sourcePoints = np.float32(
[referenceImagePts[m.queryIdx].pt for m in matches]
).reshape(-1, 1, 2)
destinationPoints = np.float32(
[sourceImagePts[m.trainIdx].pt for m in matches]
).reshape(-1, 1, 2)
# Obtain the homography matrix
homography, _ = cv2.findHomography(
sourcePoints, destinationPoints, cv2.RANSAC, 5.0
)
# Apply the perspective transformation to the source image corners
h, w = referenceImage.shape
corners = np.float32(
[[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]
).reshape(-1, 1, 2)
transformedCorners = cv2.perspectiveTransform(corners, homography)
# Draw a polygon on the second image joining the transformed corners
frame = cv2.polylines(
frame, [np.int32(transformedCorners)], True, 255, 3, cv2.LINE_AA,
)
# ================= Pose Estimation ================
# obtain 3D projection matrix from homography matrix and camera parameters
projection = projection_matrix(camera_parameters, homography)
# project cube or model
frame = render(frame, obj, projection, referenceImage, scale3d, False)
# ===================== Display ====================
# show result
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
print("Not enough matches are found - %d/%d" % (len(matches), MIN_MATCHES))
cap.release()
cv2.destroyAllWindows()
return 0
if __name__ == "__main__":
main()