There is an undirected connected tree with n
nodes labeled from 0
to n - 1
and n - 1
edges.
You are given the integer n
and the array edges
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree.
Return an array answer
of length n
where answer[i]
is the sum of the distances between the ith
node in the tree and all other nodes.
Example 1:
Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] Output: [8,12,6,10,10,10] Explanation: The tree is shown above. We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
Example 2:
Input: n = 1, edges = [] Output: [0]
Example 3:
Input: n = 2, edges = [[1,0]] Output: [1,1]
Constraints:
1 <= n <= 3 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
- The given input represents a valid tree.
Companies:
Google
Related Topics:
Dynamic Programming, Tree, Depth-First Search, Graph
Similar Questions:
// OJ: https://leetcode.com/problems/sum-of-distances-in-tree/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
vector<vector<int>> G;
vector<int> cnt, ans;
int root = 0;
int getSum(int u, int prev = -1, int d = 0) {
int ans = d;
for (int v : G[u]) {
if (v == prev) continue;
ans += getSum(v, u, d + 1);
}
return ans;
}
int updateCount(int u, int prev = -1) {
int ans = 0;
for (int v : G[u]) {
if (v == prev) continue;
ans += updateCount(v, u);
}
return cnt[u] = ans + 1;
}
void updateAns(int u, int prev = -1) {
if (prev != -1) ans[u] = ans[prev] + cnt[root] - 2 * cnt[u];
for (int v : G[u]) {
if (v == prev) continue;
updateAns(v, u);
}
}
public:
vector<int> sumOfDistancesInTree(int n, vector<vector<int>>& E) {
if (n == 1) return {0};
G.assign(n, vector<int>());
cnt.assign(n, 0);
ans.assign(n, 0);
vector<int> indegree(n);
for (auto &e : E) {
int u = e[0], v = e[1];
G[u].push_back(v);
G[v].push_back(u);
++indegree[u];
++indegree[v];
}
for (; indegree[root] != 1; ++root); // pick a leaf node as root
ans[root] = getSum(root); // get the sum of distances of this node `root`
updateCount(root); // update the cnt[i] which is the number of nodes in the subtree with `i` as the subtree root
updateAns(root); // update the answer: ans[u] = ans[prev] + cnt[root] - 2 * cnt[u]
return ans;
}
};
Simplify code according to https://leetcode.com/problems/sum-of-distances-in-tree/solution/