Given an array nums
with n
integers, your task is to check if it could become non-decreasing by modifying at most one element.
We define an array is non-decreasing if nums[i] <= nums[i + 1]
holds for every i
(0-based) such that (0 <= i <= n - 2
).
Example 1:
Input: nums = [4,2,3] Output: true Explanation: You could modify the first4
to1
to get a non-decreasing array.
Example 2:
Input: nums = [4,2,1] Output: false Explanation: You can't get a non-decreasing array by modify at most one element.
Constraints:
n == nums.length
1 <= n <= 104
-105 <= nums[i] <= 105
Related Topics:
Array
Similar Questions:
This problem is asking whether the array is non-decreasing after deleting at most one element.
We can try deleting one element at each position, and return true
if it satisfies the following condition:
A[i+1] >= A[i-1] && i >= R
where A[R]
is the rightmost element that A[R] > A[R+1]
. That is, for any i >= R
, the right part A[i+1 .. N-1]
is non-decreasing.
Once A[i] < A[i-1]
, we should stop scanning because the left part won't be non-decreasing.
// OJ: https://leetcode.com/problems/non-decreasing-array/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
bool checkPossibility(vector<int>& A) {
int N = A.size(), R = N - 2;
for (; R >= 0 && A[R] <= A[R + 1]; --R);
for (int i = 0; i < N; ++i) {
if ((i == 0 || i == N - 1 || A[i + 1] >= A[i - 1]) && i >= R) return true;
if (i - 1 >= 0 && A[i] < A[i - 1]) break;
}
return false;
}
};
// OJ: https://leetcode.com/problems/non-decreasing-array/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
bool checkPossibility(vector<int>& A) {
for (int i = 1, cnt = 0; i < A.size(); ++i) {
if (A[i] >= A[i - 1]) continue;
if (++cnt > 1) return false;
if (i - 2 < 0 || min(A[i], A[i - 1]) >= A[i - 2]) A[i] = A[i - 1] = min(A[i], A[i - 1]);
else A[i] = A[i - 1] = max(A[i], A[i - 1]);
}
return true;
}
};