Given an array of positive integers nums
and a positive integer target
, return the minimal length of a
target
. If there is no such subarray, return 0
instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4] Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1] Output: 0
Constraints:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 104
Follow up: If you have figured out the
O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.
Related Topics:
Array, Binary Search, Sliding Window, Prefix Sum
Similar Questions:
- Minimum Window Substring (Hard)
- Maximum Size Subarray Sum Equals k (Hard)
- Maximum Length of Repeated Subarray (Hard)
- Minimum Operations to Reduce X to Zero (Hard)
- K Radius Subarray Averages (Hard)
- Maximum Product After K Increments (Hard)
// OJ: https://leetcode.com/problems/minimum-size-subarray-sum/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int sum = 0, i = 0, j = 0, N = nums.size(), ans = INT_MAX;
while (j < N) {
while (j < N && sum < s) sum += nums[j++];
if (sum < s) break;
while (i < j && sum >= s) sum -= nums[i++];
ans = min(ans, j - i + 1);
}
return ans == INT_MAX ? 0 : ans;
}
};
// OJ: https://leetcode.com/problems/minimum-size-subarray-sum/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int minSubArrayLen(int target, vector<int>& A) {
int sum = 0, N = A.size(), i = 0, j = 0, ans = INT_MAX;
while (j < N) {
sum += A[j++];
while (sum >= target) {
ans = min(ans, j - i);
sum -= A[i++];
}
}
return ans == INT_MAX ? 0 : ans;
}
};
valid(len)
returns true if whether there exists a subarray of length len
that has sum greater than or equal to target
.
We binary search the length range [1, N]
because this predicate valid(len)
is monotonic. That is, there must exist an index K
that for any len >= K
, valid(len)
is true; and for any len < K
, valid(len)
is false.
// OJ: https://leetcode.com/problems/minimum-size-subarray-sum
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(1)
class Solution {
public:
int minSubArrayLen(int target, vector<int>& A) {
int N = A.size(), L = 1, R = N;
auto valid = [&](int len) {
int sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i];
if (i - len >= 0) sum -= A[i - len];
if (sum >= target) return true;
}
return false;
};
while (L <= R) {
int M = (L + R) / 2;
if (valid(M)) R = M - 1;
else L = M + 1;
}
return L > N ? 0 : L;
}
};