forked from ami66/yolov5_v6.0_object_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_to_coco.py
195 lines (150 loc) · 6.24 KB
/
voc_to_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
from random import shuffle
import os
from shutil import copyfile
from PIL import Image, ImageDraw
from xml.dom.minidom import parse
import numpy as np
FILE_ROOT = "./datasets/"
class_names=['name','sex','nation','birthday','address_line1','address_line2','address_line3','id_number','office','effective_date']
test_rate = 0.2
IMAGE_PATH = FILE_ROOT + "images" # 图片的位置
ANNOTATIONS_PATH = FILE_ROOT + "Annotations" # 数据集标签文件的位置
LABELS_ROOT = FILE_ROOT + "Labels" # 进行归一化之后的标签位置
os.makedirs(LABELS_ROOT)
DEST_IMAGES_PATH = "split/images" # 区分训练集、测试集、验证集的图片目标路径
DEST_LABELS_PATH = "split/labels" # 区分训练集、测试集、验证集的标签文件目标路径
def cord_converter(size, box):
"""
将标注的 xml 文件标注转换为 darknet 形的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
def save_file(img_jpg_file_name, size, img_box):
save_file_name = LABELS_ROOT + '/' + img_jpg_file_name + '.txt'
file_path = open(save_file_name, "a+")
for box in img_box:
for i,class_name in enumerate(class_names):
if box[0] == class_name:
cls_num = i
else:
continue
new_box = cord_converter(size, box[1:])
#file_path.write(f"{cls_num} {new_box[0]} {new_box[1]} {new_box[2]} {new_box[3]}\n")
file_path.write(str(cls_num)+' '+str(new_box[0])+' '+str(new_box[1])+' '+str(new_box[2])+' '+str(new_box[3])+'\n')
file_path.flush()
file_path.close()
def test_dataset_box_feature(file_name, point_array):
"""
使用样本数据测试数据集的建议框
:param image_name: 图片文件名
:param point_array: 全部的点 [建议框sx1,sy1,sx2,sy2]
:return: None
"""
im = Image.open(IMAGE_PATH+'/'+'file_name')
imDraw = ImageDraw.Draw(im)
for box in point_array:
x1 = box[1]
y1 = box[2]
x2 = box[3]
y2 = box[4]
imDraw.rectangle((x1, y1, x2, y2), outline='red')
im.show()
def get_xml_data(file_path, img_xml_file):
img_path = file_path + '/' + img_xml_file + '.xml'
print(img_path)
dom = parse(img_path)
root = dom.documentElement
img_name = root.getElementsByTagName("filename")[0].childNodes[0].data
img_size = root.getElementsByTagName("size")[0]
objects = root.getElementsByTagName("object")
img_w = img_size.getElementsByTagName("width")[0].childNodes[0].data
img_h = img_size.getElementsByTagName("height")[0].childNodes[0].data
img_c = img_size.getElementsByTagName("depth")[0].childNodes[0].data
# print("img_name:", img_name)
# print("image_info:(w,h,c)", img_w, img_h, img_c)
img_box = []
for box in objects:
cls_name = box.getElementsByTagName("name")[0].childNodes[0].data
x1 = int(box.getElementsByTagName("xmin")[0].childNodes[0].data)
y1 = int(box.getElementsByTagName("ymin")[0].childNodes[0].data)
x2 = int(box.getElementsByTagName("xmax")[0].childNodes[0].data)
y2 = int(box.getElementsByTagName("ymax")[0].childNodes[0].data)
# print("box:(c,xmin,ymin,xmax,ymax)", cls_name, x1, y1, x2, y2)
img_jpg_file_name = img_xml_file + '.jpg'
img_box.append([cls_name, x1, y1, x2, y2])
# print(img_box)
# test_dataset_box_feature(img_jpg_file_name, img_box)
save_file(img_xml_file, [img_w, img_h], img_box)
def copy_data(img_set_source, img_labels_root, imgs_source, type):
file_name = img_set_source + '/' + type + ".txt"
file = open(file_name)
# 判断文件夹是否存在,不存在则创建
root_image = os.path.join(FILE_ROOT, DEST_IMAGES_PATH+'/' + type)
if not os.path.exists(root_image):
os.makedirs(root_image)
root_labels = os.path.join(FILE_ROOT, DEST_LABELS_PATH + '/' + type)
if not os.path.exists(root_labels):
os.makedirs(root_labels)
# 遍历文件夹
for line in file.readlines():
# print(line)
img_name = line.strip('\n')
img_sor_file = imgs_source + '/' + img_name + '.jpg'
label_sor_file = img_labels_root + '/' + img_name + '.txt'
# print(img_sor_file)
# print(label_sor_file)
# im = Image.open(rf"{img_sor_file}")
# im.show()
# 复制图片
DICT_DIR = FILE_ROOT + DEST_IMAGES_PATH + '/' + type
img_dict_file = DICT_DIR + '/' + img_name + '.jpg'
copyfile(img_sor_file, img_dict_file)
# 复制 label
DICT_DIR = FILE_ROOT + DEST_LABELS_PATH + '/' + type
img_dict_file = DICT_DIR + '/' + img_name + '.txt'
copyfile(label_sor_file, img_dict_file)
def save_names(file_name, type='test'):
save_file_name = FILE_ROOT + '/' + type + '.txt'
file_path = open(save_file_name, "a+")
file_path.write(file_name + "\n")
file_path.flush()
file_path.close()
if __name__ == '__main__':
# 生成标签
root = ANNOTATIONS_PATH
files = os.listdir(root)
for i in range(10):
shuffle(files)
test_num = int(len(files) * test_rate)
for i, file in enumerate(files):
file_xml = file.split(".")
file_name = file_xml[0]
if i < test_num:
save_names(file_name, type='test')
else:
save_names(file_name, type='train')
get_xml_data(root, file_name)
# 将文件进行 train 和 val 的区分
imgs_root = IMAGE_PATH
img_labels_root = LABELS_ROOT
copy_data(FILE_ROOT, img_labels_root, imgs_root, "train")
# copy_data(img_set_root, img_labels_root, imgs_root, "val")
copy_data(FILE_ROOT, img_labels_root, imgs_root, "test")