forked from KlausT/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bitcoin.cu
207 lines (192 loc) · 6.03 KB
/
bitcoin.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "miner.h"
#include "cuda_helper.h"
extern void bitcoin_cpu_init(int thr_id);
extern void bitcoin_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, const uint32_t *const ms, uint32_t merkle, uint32_t time, uint32_t compacttarget, uint32_t *const h_nounce);
extern void bitcoin_midstate(const uint32_t *data, uint32_t *midstate);
uint32_t rrot(uint32_t x, unsigned int n)
{
return (x >> n) | (x << (32 - n));
}
void bitcoin_hash(uint32_t *output, const uint32_t *data, uint32_t nonce, const uint32_t *midstate)
{
int i;
uint32_t s0, s1, t1, t2, maj, ch, a, b, c, d, e, f, g, h;
uint32_t w[64];
const uint32_t k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
const uint32_t hc[8] = {
0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U
};
for (i = 0; i <= 15; i++)
{
w[i] = data[i + 16];
}
w[3] = nonce;
for (i = 16; i <= 63; i++)
{
s0 = rrot(w[i - 15], 7) ^ rrot(w[i - 15], 18) ^ (w[i - 15] >> 3);
s1 = rrot(w[i - 2], 17) ^ rrot(w[i - 2], 19) ^ (w[i - 2] >> 10);
w[i] = w[i - 16] + s0 + w[i - 7] + s1;
}
a = midstate[0];
b = midstate[1];
c = midstate[2];
d = midstate[3];
e = midstate[4];
f = midstate[5];
g = midstate[6];
h = midstate[7];
for (i = 0; i <= 63; i++)
{
s0 = rrot(a, 2) ^ rrot(a, 13) ^ rrot(a, 22);
maj = (a & b) ^ (a & c) ^ (b & c);
t2 = s0 + maj;
s1 = rrot(e, 6) ^ rrot(e, 11) ^ rrot(e, 25);
ch = (e & f) ^ ((~e) & g);
t1 = h + s1 + ch + k[i] + w[i];
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
w[0] = a + midstate[0];
w[1] = b + midstate[1];
w[2] = c + midstate[2];
w[3] = d + midstate[3];
w[4] = e + midstate[4];
w[5] = f + midstate[5];
w[6] = g + midstate[6];
w[7] = h + midstate[7];
w[8] = 0x80000000U;
for (i = 9; i <= 14; i++)
w[i] = 0U;
w[15] = 0x100U;
for (i = 16; i <= 63; i++)
{
s0 = rrot(w[i - 15], 7) ^ rrot(w[i - 15], 18) ^ (w[i - 15] >> 3);
s1 = rrot(w[i - 2], 17) ^ rrot(w[i - 2], 19) ^ (w[i - 2] >> 10);
w[i] = w[i - 16] + s0 + w[i - 7] + s1;
}
a = hc[0];
b = hc[1];
c = hc[2];
d = hc[3];
e = hc[4];
f = hc[5];
g = hc[6];
h = hc[7];
for (i = 0; i <= 63; i++)
{
s0 = rrot(a, 2) ^ rrot(a, 13) ^ rrot(a, 22);
maj = (a & b) ^ (a & c) ^ (b & c);
t2 = s0 + maj;
s1 = rrot(e, 6) ^ rrot(e, 11) ^ rrot(e, 25);
ch = (e & f) ^ ((~e) & g);
t1 = h + s1 + ch + k[i] + w[i];
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
be32enc(&output[0], a + hc[0]);
be32enc(&output[1], b + hc[1]);
be32enc(&output[2], c + hc[2]);
be32enc(&output[3], d + hc[3]);
be32enc(&output[4], e + hc[4]);
be32enc(&output[5], f + hc[5]);
be32enc(&output[6], g + hc[6]);
be32enc(&output[7], h + hc[7]);
}
int scanhash_bitcoin(int thr_id, uint32_t *pdata,
uint32_t *ptarget, uint32_t max_nonce,
uint32_t *hashes_done)
{
static THREAD uint32_t *h_nounce = nullptr;
const uint32_t first_nonce = pdata[19];
uint32_t throughputmax = device_intensity(device_map[thr_id], __func__, 1U << 28);
uint32_t throughput = min(throughputmax, (max_nonce - first_nonce)) & 0xfffffc00;
if (opt_benchmark)
ptarget[7] = 0x0005;
static THREAD volatile bool init = false;
if(!init)
{
if(throughputmax == 1<<28)
applog(LOG_INFO, "GPU #%d: using default intensity 28", device_map[thr_id]);
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
CUDA_SAFE_CALL(cudaDeviceReset());
CUDA_SAFE_CALL(cudaSetDeviceFlags(cudaschedule));
CUDA_SAFE_CALL(cudaDeviceSetCacheConfig(cudaFuncCachePreferL1));
CUDA_SAFE_CALL(cudaStreamCreate(&gpustream[thr_id]));
bitcoin_cpu_init(thr_id);
CUDA_SAFE_CALL(cudaMallocHost(&h_nounce, 2 * sizeof(uint32_t)));
mining_has_stopped[thr_id] = false;
init = true;
}
uint32_t ms[8];
bitcoin_midstate(pdata, ms);
do
{
bitcoin_cpu_hash(thr_id, throughput, pdata[19], ms, pdata[16], pdata[17], pdata[18], h_nounce);
if(stop_mining) {mining_has_stopped[thr_id] = true; cudaStreamDestroy(gpustream[thr_id]); pthread_exit(nullptr);}
if(h_nounce[0] != UINT32_MAX)
{
uint32_t vhash64[8]={0};
bitcoin_hash(vhash64, pdata, h_nounce[0], ms);
if (!opt_verify || (vhash64[7] == 0 && fulltest(vhash64, ptarget)))
{
int res = 1;
// check if there was some other ones...
*hashes_done = pdata[19] - first_nonce + throughput;
if (h_nounce[1] != 0xffffffff)
{
bitcoin_hash(vhash64, pdata, h_nounce[1], ms);
if (!opt_verify || (vhash64[7] == 0 && fulltest(vhash64, ptarget)))
{
pdata[21] = h_nounce[1];
res++;
if (opt_benchmark)
applog(LOG_INFO, "GPU #%d Found second nounce %08x", device_map[thr_id], h_nounce[1]);
}
else
{
if (vhash64[7] > 0)
{
applog(LOG_WARNING, "GPU #%d: result for %08x does not validate on CPU!", device_map[thr_id], h_nounce[1]);
}
}
}
pdata[19] = h_nounce[0];
if (opt_benchmark)
applog(LOG_INFO, "GPU #%d Found nounce %08x", device_map[thr_id], h_nounce[0]);
return res;
}
else
{
if (vhash64[7] > 0)
{
applog(LOG_WARNING, "GPU #%d: result for %08x does not validate on CPU!", device_map[thr_id], h_nounce[0]);
}
}
}
pdata[19] += throughput; CUDA_SAFE_CALL(cudaGetLastError());
} while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput)));
*hashes_done = pdata[19] - first_nonce ;
return 0;
}