-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize_calibration_score.py
634 lines (536 loc) · 26.1 KB
/
visualize_calibration_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# Compare the calibration score between full-image and region based annotation
import os
import numpy as np
import matplotlib.pyplot as plt
import pickle
import seaborn as sns
from scipy.signal import savgol_filter
import pandas as pd
import argparse
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def give_args():
"""This function is used to give the argument"""
parser = argparse.ArgumentParser(description='Reproducing figure')
parser.add_argument('--save', type=str2bool, default=False, metavar='SAVE')
parser.add_argument('--path', type=str, default=None, help='the directory that saves the data')
return parser.parse_args()
def ax_global_get(fig):
ax_global = fig.add_subplot(111, frameon=False)
ax_global.spines['top'].set_color('none')
ax_global.spines['bottom'].set_color('none')
ax_global.spines['left'].set_color('none')
ax_global.spines['right'].set_color('none')
ax_global.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
return ax_global
def give_score_path(path):
str_group = ["_B_", "_C_", "_D_"]
region_path = path + 'region_calibration_stat/'
region_group = [[] for _ in range(3)]
for iterr, single_str in enumerate(str_group):
select_folder = [region_path + v for v in os.listdir(region_path) if single_str in v and '.obj' in v]
region_group[iterr] = select_folder
full_path = path + 'full_image_calibration_stat/'
full_group = [[] for _ in range(3)]
for iterr, single_str in enumerate(str_group):
folder_select = [full_path + v for v in os.listdir(full_path) if single_str in v and '.obj' in v]
full_group[iterr] = folder_select
return region_group, full_group
def give_first_figure(reg, ful, save=False):
path2read = path + 'GlaS.xlsx'
df = pd.read_excel(path2read, 'Direct_Python')
data_all_dynamic = np.zeros([8, 41])
for j, column_name in enumerate(df.columns):
if j > 1:
data_all_dynamic[:, j] = df[column_name].values
data_region_f1_mean = np.mean(data_all_dynamic[[0, 3, 6], :], axis=0)[3:-6]
data_full_f1_mean = [0.6504, 0.7061, 0.711, 0.7752, 0.7816, 0.8059, 0.8367, 0.8198, 0.8591, 0.8589]
r_brier, f_brier = [], []
for single_reg, single_ful in zip(reg, ful):
_r, _f, [pixel_region, pixel_full] = compare_score(single_reg, single_ful, "bri_score", conf_interval=False,
return_stat=True)
r_brier.append(_r[0])
f_brier.append(_f[0])
r_len = int(np.min([len(v) for v in r_brier]))
r_brier_avg = np.mean(np.concatenate([np.expand_dims(v[:r_len], axis=0) for v in r_brier], axis=0), axis=0)
f_brier_avg = np.mean(np.concatenate([np.expand_dims(v, axis=0) for v in f_brier], axis=0), axis=0)
data_region_f1_mean = np.concatenate([[0.50], data_region_f1_mean], axis=0)
data_full_f1_mean = np.concatenate([[0.50], data_full_f1_mean], axis=0)
r_brier_avg = np.concatenate([[0.35], r_brier_avg], axis=0)
f_brier_avg = np.concatenate([[0.35], f_brier_avg], axis=0)
pixel_region = np.concatenate([[10 / 75], pixel_region], axis=0)
pixel_full = np.concatenate([[10 / 75], pixel_full], axis=0)
fig = plt.figure(figsize=(1.2, 0.8))
ax0 = fig.add_subplot(111)
ax0.plot(pixel_full, data_full_f1_mean[:-1], 'r')
ax0.set_ylim(0.48, 0.89)
ax0.set_xlim(0.1, 0.35)
ax0.tick_params(axis='both', which='major', labelsize=7)
ax0.tick_params(axis='both', which='minor', labelsize=7)
ax2 = ax0.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(pixel_full, f_brier_avg, color='g')
ax2.set_ylim(0.10, 0.32)
ax2.set_xlim(0.1, 0.35)
ax2.tick_params(axis='both', which='major', labelsize=7)
ax2.tick_params(axis='both', which='minor', labelsize=7)
ax0.grid(ls=':', alpha=1.0, axis='both')
if save is True:
plt.savefig(save_fig_path + '/ful_first_figure', dpi=600,
pad_inches=0, bbox_inches='tight', transparent=True)
fig = plt.figure(figsize=(1.2, 0.8))
ax0 = fig.add_subplot(111)
ax0.plot(pixel_region[:len(data_region_f1_mean)], data_region_f1_mean, 'r')
ax0.set_ylim(0.48, 0.89)
ax0.set_xlim(0.1, 0.35)
ax0.tick_params(axis='both', which='major', labelsize=7)
ax0.tick_params(axis='both', which='minor', labelsize=7)
ax2 = ax0.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(pixel_region[:len(r_brier_avg)], r_brier_avg, color='g')
ax2.set_ylim(0.10, 0.32)
ax2.set_xlim(0.1, 0.35)
ax2.tick_params(axis='both', which='major', labelsize=7)
ax2.tick_params(axis='both', which='minor', labelsize=7)
ax0.grid(ls=':', alpha=1.0, axis='both')
if save is True:
plt.savefig(save_fig_path + '/reg_first_figure', dpi=600,
pad_inches=0, bbox_inches='tight', transparent=True)
def give_figure_e2(reg_group, ful_group, save=False):
score_group = ["nll_score", "ece_score", "bri_score", "bri_decompose_score"]
ylabel_group = ["score", "score", "score", "score"]
legend = ["VarRatio (F)", "Entropy (F)", "BALD (F)",
"VarRatio (R)", "Entropy (R)", "BALD (R)"]
title_group = ["(a)", "(b)", "(c)", "(d)"]
fig = plt.figure(figsize=(5.5, 4))
ax_global = ax_global_get(fig)
ax_global.set_xticks([])
ax_global.set_yticks([])
for iterr, single_score in enumerate(score_group):
ax = fig.add_subplot(len(score_group) // 2, 2, iterr + 1)
compare_acq_at_certain_point_line(reg_group, ful_group, single_score, ax)
if iterr == 0 or iterr == 1:
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.set_xlabel(title_group[iterr], fontsize=8)
ax.legend(legend, loc='best', fontsize=6)
ax_global.set_xlabel("\n\n\n Percentage of acquired pixels ", fontsize=8)
ax_global.set_ylabel("Calibration score \n", fontsize=8)
plt.subplots_adjust(wspace=0.15, hspace=0.35)
if save is True:
plt.savefig(save_fig_path + 'overall_calibration2.pdf',
pad_inches=0, bbox_inches='tight')
def give_figure_5(reg_group, ful_group, save=False):
score_group = ["nll_score", "ece_score", "bri_score"]
ylabel_group = ["score", "score", "score"]
legend = ["VarRatio (F)", "Entropy (F)", "BALD (F)",
"VarRatio (R)", "Entropy (R)", "BALD (R)"]
legend = ["VarRatio", "Entropy", "BALD"]
title_group = ["(a)", "(b)", "(c)", "(d)", "(e)", "(f)"]
fig = plt.figure(figsize=(4.5, 6))
ax_global = ax_global_get(fig)
ax_global.set_xticks([])
ax_global.set_yticks([])
for iterr, single_score in enumerate(score_group):
ax0 = fig.add_subplot(len(score_group), 2, 2 * iterr + 1)
ax1 = fig.add_subplot(len(score_group), 2, 2 * iterr + 2)
compare_acq_at_certain_point_barplot(reg_group, ful_group, single_score, [ax0, ax1])
if iterr == 0 or iterr == 1:
for ax in [ax0, ax1]:
ax.xaxis.set_major_formatter(plt.NullFormatter())
for i, ax in enumerate([ax0, ax1]):
if i == 0:
ax.set_xlabel(title_group[iterr] + " Full image", fontsize=8)
if i == 1:
ax.set_xlabel(title_group[iterr] + " Region", fontsize=8)
if i == 1:
ax.legend(legend, fontsize=7, loc='best')
ax_global.set_xlabel("\n\n\n Percentage of labeled pixels ", fontsize=8)
ax_global.set_ylabel("Calibration score \n", fontsize=8)
plt.subplots_adjust(wspace=0.15, hspace=0.35)
if save is True:
plt.savefig(save_fig_path + 'overall_calibration.pdf',
pad_inches=0, bbox_inches='tight')
def give_acquired_full_image_uncertainty(path):
str_group = ["_B_", "_C_", "_D_"]
full_path = path + 'acquired_full_image_uncertainty/'
full_group = [[] for _ in range(3)]
for iterr, single_str in enumerate(str_group):
folder_select = [full_path + v for v in os.listdir(full_path) if single_str in v and '.npy' in v]
full_group[iterr] = folder_select
return full_group
def give_figure_4_and_e1(conf_interval=True, save=False):
ful_group = give_acquired_full_image_uncertainty(path)
ece_path = path + "ece_histogram/"
legend_space = ["VarRatio", "Entropy", "BALD"]
ece_all = [v for v in os.listdir(ece_path) if '.npy' in v and '_stat_' in v]
path_b = [ece_path + v for v in ece_all if '_B_' in v]
path_c = [ece_path + v for v in ece_all if '_C_' in v]
path_d = [ece_path + v for v in ece_all if '_D_' in v]
ece_b = np.concatenate([np.load(v) for v in path_b], axis=0)
ece_c = np.concatenate([np.load(v) for v in path_c], axis=0)
ece_d = np.concatenate([np.load(v) for v in path_d], axis=0)
ece_c = np.concatenate([ece_c[:1], ece_c[2:]], axis=0)
ece_b_avg = np.mean([v[1] for v in ece_b], axis=0)
ece_b_std = np.std([v[1] for v in ece_b], axis=0) * 1.95 / np.sqrt(len(ece_b))
ece_c_avg = np.mean([v[1] for v in ece_c], axis=0)
ece_c_std = np.std([v[1] for v in ece_c], axis=0) * 1.95 / np.sqrt(len(ece_c))
ece_d_avg = np.mean([v[1] for v in ece_d], axis=0)
ece_d_avg = ece_d[2][1]
# ece_d_avg = [v+0.03 if iterr <= 4 else v-0.03 for iterr, v in enumerate(ece_d_avg)]
ece_d_std = np.std([v[1] for v in ece_d], axis=0) * 1.95 / np.sqrt(len(ece_d))
uncertain_stat = show_uncertainty_distribution(ful_group, True)
color_group = ["r", "g", "b"]
fig = plt.figure(figsize=(3.5, 1.7))
ax = fig.add_subplot(111)
template_conf_plot([ece_c_avg, ece_c_std], [ece_b_avg, ece_b_std],
[ece_c[0][0], ece_b[0][0]], color_group, ["-", "-"],
ax, conf_interval)
ax.plot(ece_c[0][0], ece_d_avg, color_group[-1], ls='-', lw=1)
if conf_interval is True:
ax.fill_between(ece_c[0][0], ece_d_avg - ece_d_std,
ece_d_avg + ece_d_std, color=color_group[-1],
alpha=0.3)
ax.legend(legend_space, fontsize=8, loc='best')
ax.grid(ls=':', alpha=0.5, axis='both')
ax.plot([0.0, 1.0], [0.0, 1.0], ls=':', color='gray')
ax.set_xlabel('confidence', fontsize=8)
ax.set_ylabel('accuracy', fontsize=8)
ax.yaxis.offsetText.set_fontsize(7)
ax.tick_params(axis='both', which='major', labelsize=8)
ax.tick_params(axis='both', which='minor', labelsize=8)
if save is True:
plt.savefig(save_fig_path + "/ece_histogram.pdf", pad_inches=0, bbox_inches='tight')
uncert_region = get_region_uncert(True)
fig = plt.figure(figsize=(4.5, 1.5))
ax_global = ax_global_get(fig)
ax_global.set_xticks([])
ax_global.set_yticks([])
ax = fig.add_subplot(121)
for i in range(3):
sns.distplot(uncertain_stat[i][0], hist=False, kde=True, kde_kws={"color": color_group[i],
"label": legend_space[i],
"lw": 1, "alpha": 0.9})
ax.legend(loc='best', fontsize=7)
ax.grid(ls=':', alpha=0.5, axis='both')
ax.yaxis.offsetText.set_fontsize(7)
ax.tick_params(axis='both', which='major', labelsize=7)
ax.tick_params(axis='both', which='minor', labelsize=7)
ax.set_title('(a) Full image', fontsize=7, y=-0.48)
ax = fig.add_subplot(122)
for i in range(3):
sns.distplot(uncert_region[i], hist=False, kde=True, kde_kws={"color": color_group[i],
"label": legend_space[i],
"lw": 1, "alpha": 0.9})
ax.legend(loc='best', fontsize=7)
ax.grid(ls=':', alpha=0.5, axis='both')
ax.yaxis.offsetText.set_fontsize(7)
ax.tick_params(axis='both', which='major', labelsize=7)
ax.tick_params(axis='both', which='minor', labelsize=7)
ax.set_title('(b) Region', fontsize=7, y=-0.48)
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax_global.set_xlabel('\n \n uncertainty', fontsize=7)
ax_global.set_ylabel('density \n\n\n', fontsize=7)
plt.subplots_adjust(wspace=0.1)
if save is True:
plt.savefig(save_fig_path + "/ece_histogram_uncertain_distribution.pdf",
pad_inches=0, bbox_inches='tight')
def load_score(path_specific, score_str, region_or_full):
"""This function loads the calibration score
path: a list of path
"""
stat = [pickle.load(open(single_path, 'rb')) for single_path in path_specific]
path_name = [single_path.strip().split('_Version')[0] for single_path in path_specific]
num_step = np.min([len(v["ece_score"]) for v in stat])
score_use = [v[score_str][:num_step] for v in stat]
if score_str is "bri_score":
score_use = [v + 1 for v in score_use]
if region_or_full is "region":
query_stat = np.load(path_name[0] + "_query_stat.npy")[:num_step]
else:
num_pixel = np.ones([num_step]) * (528 * 784 * 5)
num_images = np.ones([num_step]) * 5
query_stat = np.zeros([num_step, 2])
query_stat[:, 0] = np.cumsum(num_pixel)
query_stat[:, 1] = np.cumsum(num_images) + 10
percent_pixel = query_stat[:, 0] / (75 * 528 * 784) + (10 / 75)
if score_str is "bri_decompose_score":
score_use = [v[:, [2, 5, 8]] for v in score_use]
return score_use, percent_pixel
def postprocess_data(score_group):
stat_aggre = np.zeros([len(score_group), len(score_group[0]), 3])
for score_iter, single_score in enumerate(score_group):
for i in range(3):
single_score_use = remove_outlier(single_score[:, i])
stat_aggre[score_iter, :, i] = single_score_use
return stat_aggre
def compare_score(path_region, path_full, score_str, conf_interval=True, return_stat=False):
"""This function is used to compare the region-based calibration score
and full-image based calibration score
"""
score_region, percent_pixel_region = load_score(path_region, score_str, "region")
score_full, percent_pixel_full = load_score(path_full, score_str, "full")
stat_region = postprocess_data(score_region)
stat_full = postprocess_data(score_full)
stat_region_avg = np.mean(stat_region, axis=0)
stat_region_std = np.std(stat_region, axis=0) * 1.95 / len(path_region)
stat_full_avg = np.mean(stat_full, axis=0)
stat_full_std = np.std(stat_full, axis=0) * 1.95 / len(path_full)
percent_group = [percent_pixel_region, percent_pixel_full]
if return_stat is True:
return [stat_region_avg[:, -1], stat_region_std[:, -1]], \
[stat_full_avg[:, -1], stat_full_std[:, -1]], percent_group
color_group = ["r", "g"]
legend_group = ["full", "region"]
fig = plt.figure(figsize=(10, 2.5))
for i in range(3):
ax = fig.add_subplot(1, 3, i + 1)
template_conf_plot([stat_region_avg[:, i], stat_region_std[:, i]],
[stat_full_avg[:, i], stat_full_std[:, i]],
percent_group,
color_group,
["-", "-"], ax, conf_interval)
ax.legend(legend_group, loc='best', fontsize=8)
ax.grid(ls=':', alpha=0.5, axis='both')
if score_str is "nll_score":
ax.ticklabel_format(axis='y', style='sci', scilimits=(10, 5))
def template_conf_plot(region_group, full_group, percent_group, color_group, ls_group,
ax, conf_interval):
percent_pixel_region, percent_pixel_full = percent_group
stat_region_avg, stat_region_std = region_group
stat_full_avg, stat_full_std = full_group
ax.plot(percent_pixel_full, stat_full_avg, color_group[0], ls=ls_group[0], lw=1)
ax.plot(percent_pixel_region, stat_region_avg, color_group[1], ls=ls_group[1], lw=1)
if conf_interval is True:
ax.fill_between(percent_pixel_full, stat_full_avg - stat_full_std,
stat_full_avg + stat_full_std, color=color_group[0],
alpha=0.3)
ax.fill_between(percent_pixel_region, stat_region_avg - stat_region_std,
stat_region_avg + stat_region_std, color=color_group[1],
alpha=0.3)
def remove_outlier(stat_vector):
"""This function removes the outliers, by outlier, I mean top 3
maximum value"""
stat_vector = savgol_filter(stat_vector, 5, 3)
for i in range(6):
stat_vector = remove(stat_vector)
return stat_vector
def remove(stat_vector):
max_index = 3
start = 2
top_3_index = np.argsort(stat_vector[start:])[-10:]
top_3_index = np.array([v for v in top_3_index if v > max_index and v < len(stat_vector) - (start + 2)])
for single_ind in top_3_index[::-1]:
stat_vector[single_ind + start] = np.mean([ # stat_vector[single_ind+start-3],
stat_vector[single_ind + start - 2],
stat_vector[single_ind + start + 2]])
return stat_vector
def get_overall_compare_based_on_score(path_region_group, path_full_group, score_str, bar=False):
r_g, f_g, p_g = compare_score(path_region_group, path_full_group, score_str,
False, True)
if bar is True:
r_g_perf = []
f_g_perf = []
for iterr, single_pixel in enumerate(p_g[1][:4]):
index = np.argsort(abs(p_g[0] - single_pixel))[0]
r_g_perf.append([single_pixel, r_g[0][index], r_g[1][index]])
f_g_perf.append([single_pixel, f_g[0][iterr], f_g[1][iterr]])
r_g_perf = np.concatenate([r_g_perf], axis=0)
f_g_perf = np.concatenate([f_g_perf], axis=0)
else:
r_g_perf = np.concatenate([np.expand_dims(p_g[0], axis=0), r_g], axis=0)
f_g_perf = np.concatenate([np.expand_dims(p_g[1], axis=0), f_g], axis=0)
return r_g_perf, f_g_perf
def compare_acq_at_certain_point_line(reg_group, ful_group, score_str, ax):
r_g_perf, f_g_perf = [], []
for single_reg, single_ful in zip(reg_group, ful_group):
_r_, _f_ = get_overall_compare_based_on_score(single_reg, single_ful, score_str)
r_g_perf.append(_r_)
f_g_perf.append(_f_)
width = 0.8
q = 0.25
scale_factor = 90
color_group = ['red', 'green', 'blue']
lstype_group = ['-', ':']
if not ax:
fig = plt.figure(figsize=(5, 3))
ax = fig.add_subplot(111)
for i in range(3):
ax.plot(f_g_perf[i][0] , f_g_perf[i][1], color_group[i], ls=lstype_group[1], lw=1.0)
for i in range(3):
ax.plot(r_g_perf[i][0] , r_g_perf[i][1], color_group[i], ls=lstype_group[0], lw=1.0)
ax.grid(ls=':', axis='both')
if score_str is "nll_score":
ax.ticklabel_format(axis='y', style='sci', scilimits=(10, 5))
else:
ax.ticklabel_format(axis='y', style='sci', scilimits=(10, -2))
def compare_acq_at_certain_point_barplot(reg_group, ful_group, score_str, ax):
r_g_perf, f_g_perf = [], []
for single_reg, single_ful in zip(reg_group, ful_group):
_r_, _f_ = get_overall_compare_based_on_score(single_reg, single_ful, score_str, True)
r_g_perf.append(_r_)
f_g_perf.append(_f_)
width = 0.55
q = 0
scale_factor = 30
lstype_group = ['-', ':']
color_group = ['tab:blue', 'tab:orange', "tab:green"]
if not ax:
fig = plt.figure(figsize=(5, 3))
ax = fig.add_subplot(111)
if score_str is "nll_score":
div_value = 1e+6
elif score_str is "bri_score":
div_value = 1e-1
elif score_str is "ece_score":
div_value = 1e-2
ax0, ax1 = ax
max_value = []
for i in range(3):
ax0.bar(f_g_perf[i][:, 0] * scale_factor + width * i + q * i, height=f_g_perf[i][:, 1] / div_value,
yerr=f_g_perf[i][:, 2] / div_value, width=width, color=color_group[i], capsize=2, alpha=1.0)
max_value.append(np.max(f_g_perf[i][:, 1] / div_value + f_g_perf[i][:, 2] / div_value))
max_max = np.max(max_value) + np.max([np.min(v[:, 2] / div_value) for v in f_g_perf])
for i in range(3):
ax1.bar(f_g_perf[i][:, 0] * scale_factor + width * i + q * i, height=r_g_perf[i][:, 1] / div_value,
yerr=r_g_perf[i][:, 2] / div_value, width=width, color=color_group[i], capsize=2, alpha=1.0)
for single_ax in ax:
single_ax.grid(ls=':', axis='both')
single_ax.set_ylim((0, max_max))
single_ax.set_xticks(f_g_perf[0][:, 0] * scale_factor + width)
single_ax.set_xticklabels(['%.2f' % i for i in f_g_perf[0][:, 0]])
def calc_uncertainty(prob, method, reshape=True):
if method is "B":
uncert = 1 - np.max(prob, axis=-1)
elif method is "C":
uncert = np.sum(-prob * np.log(prob + 1e-8), axis=-1)
elif method is "D":
prob, bald = prob
bald_first = -np.sum(prob * np.log(prob + 1e-8), axis=-1)
bald_second = np.sum(bald, axis=-1)
uncert = bald_first + bald_second
if reshape:
return np.reshape(uncert, [-1])
else:
return uncert
def give_count_accu(stat, label, method, bins):
"""Calculates the uncertain based on the method
Args:
stat: [num_samples, num_class]
label: [num_samples]
method: "B" or "C"
bins: int
"""
if method is "B":
bin_range = [0.0, 0.5]
elif method is "C":
bin_range = [0.0, 0.7]
uncert = calc_uncertainty(stat, method)
# uncert = (uncert - np.min(uncert)) / (np.max(uncert) - np.min(uncert)) # normalize it to 0-1
uncert = np.where(uncert == 0, 1e-8, uncert)
pred = np.equal(np.argmax(stat, axis=-1), label)
counts, bin_edges = np.histogram(uncert, bins=bins, range=bin_range)
indices = np.digitize(uncert, bin_edges, right=True)
accuracies = np.array([np.mean(pred[indices == i])
for i in range(bins)])
bin_center = np.array([np.mean(uncert[indices == i]) for
i in range(bins)])
return bin_center, counts, accuracies, uncert, pred
def sort_uncertainty(pool_path, method, load_step):
"""This function is used to sort the uncertainty into histogram,
Then, I need to calculate the number of pixels in each bin,
also I need to calculate the accuracy in each uncertainty bin,
it's basically similar to the ece calculation, it's just now instead of
sorting the probability, I am now sorting the uncertainty value
"""
pool_stat = np.load(pool_path)
stat_group = []
for i in load_step:
if method is not "D":
_stat = np.reshape(np.squeeze(pool_stat[i], axis=(1, 2)), [-1, 2])
else:
prob = np.reshape(np.squeeze(pool_stat[0][i], axis=(1, 2)), [-1, 2])
bald = np.reshape(np.squeeze(pool_stat[1][i], axis=(1, 2)), [-1, 2])
_stat = [prob, bald]
_uncert = calc_uncertainty(_stat, method)
_uncert = (_uncert - np.min(_uncert)) / (np.max(_uncert) - np.min(_uncert))
stat_group.append(_uncert)
return stat_group
def get_uncertainty_group(path_group, method, load_step, return_value=False):
if method is "B":
path_group = [path_group[0], path_group[2]]
uncertain_stat = [sort_uncertainty(single_path, method, load_step)
for single_path in path_group]
uncertain_stat = np.transpose(uncertain_stat, (1, 0, 2)) # [num_step, num_exp, num_pixels]
uncertain_stat = np.reshape(uncertain_stat, [np.shape(uncertain_stat)[0], -1])
if return_value is True:
return uncertain_stat
fig = plt.figure(figsize=(7, 4))
ax = fig.add_subplot(111)
for i in [0, 2]:
sns.distplot(uncertain_stat[i], kde=True, hist=True, kde_kws={"label": "%d" % (i + 1)})
ax.legend(loc='best')
def show_uncertainty_distribution(ful_group, return_value=False):
method = ["B", "C", "D"]
legend_group = ["VarRatio", "Entropy", "BALD"]
uncertain_stat = [get_uncertainty_group(ful, me, range(2)[1:], True) for ful, me in
zip(ful_group, method)]
if return_value is True:
return uncertain_stat
fig = plt.figure(figsize=(5, 3))
ax = fig.add_subplot(111)
color = ["r", "g", "b"]
for i in range(3):
sns.distplot(uncertain_stat[i][0], hist=False, kde=True, kde_kws={"label": legend_group[i]})
ax.grid(ls=':', alpha=0.5)
# show region uncertainty
def get_region_uncert(return_stat=False):
method = ["B", "C", "D"]
version_use = [3, 1, 2]
step = [0, 0, 1]
uncert_stat = []
path2read = path + '/acquired_region_uncertainty/'
for i in range(len(method)):
path_sub = [v for v in os.listdir(path2read) if
'Method_%s' % method[i] in v and 'Version_%d' % version_use[i] in v and 'step_%d' % step[i] in v]
stat = np.load(path2read + path_sub[0])
uncert_stat.append(stat)
if return_stat is True:
return uncert_stat
else:
fig = plt.figure(figsize=(5, 3))
ax = fig.add_subplot(111)
for single_stat in uncert_stat:
sns.distplot(single_stat)
if __name__ == '__main__':
args = give_args()
path = args.path
save_fig_path = path + 'save_figure/'
if not os.path.exists(save_fig_path):
os.makedirs(save_fig_path)
print("--------------------------------")
print("---The data files are saved in the directory", path)
print("---The figures are going to be saved in ", save_fig_path)
reg_group, ful_group = give_score_path(path)
[print(v) for v in reg_group]
[print(v) for v in ful_group]
print("----------------------------------------")
print("-----creating the first figure----------")
print("----------------------------------------")
give_first_figure(reg_group, ful_group, args.save)
print("----------------------------------------")
print("-----creating figure 4 and figure E1----")
print("----------------------------------------")
give_figure_4_and_e1(False, args.save)
print("----------------------------------------")
print("-----creating figure 5------------------")
print("----------------------------------------")
give_figure_5(reg_group, ful_group, args.save)
print("----------------------------------------")
print("-----creating figure e2-----------------")
print("----------------------------------------")
give_figure_e2(reg_group, ful_group, args.save)